This exam study guide still contains last years content. It will be updated at a later point.

University of Tartu

Prof. Dr. Dominique Unruh

Cryptology I
Exam study guide, spring 2017

Last Update: February 15, 2017

The exam will be open book / open notes / open screenshot (but no laptops or other electronic/communicating devices). Section numbers refer to the lecture notes.

You should be able to...

- ...explain how to use frequency analysis to break the Vigenere cipher and substitution cipher. [Section 1]
- ...to apply frequency analysis to break the Vigenere and the substitution cipher. (In simple cases where no big computations are needed.) [Section 1]
- ...distinguish between ciphertext-only attacks, known-plaintext attacks, chosen-plaintext attacks, and chosen-ciphertext attacks. [Section 2]
- ...determine whether an encryption scheme has perfect secrecy. [Section 3]
- ...explain the drawbacks of the one-time pad (both in terms of practicality and security). [Section 3]
- ...construct an attack on a scheme that uses the one-time pad incorrectly. [Section 3]
- ...list what disadvantages are unavoidable in schemes with perfect secrecy. [Section 3]
- ...for any part of the definition of perfect secrecy, explain why this part of the definition is as it is. [Section 3]
- ...describe the components of a stream cipher. [Section 4]
- ...explain which properties a key stream should have and why. [Section 4]
- ...describe how an LFSR is constructed and how it can be used to build a streamcipher (an insecure one, though). [Section 4]
- ...from a fragment of the keystream produced by an LFSR derive the initial state (key) of the LFSR. [Section 4]
• ...describe the advantages and disadvantages of “best-effort design” and provable security.

• ...give examples of both.

• [#SKIP#] ...given a pictorial security definition (i.e., with challenger and adversary and arrows between them), give a textual definition (of the kind “for all polynomial-time adversaries ... Pr[...] ≤ ...” or similar).

• [#SKIP#] ...and vice versa.

• [#SKIP#] ...tell whether a given function is negligible or not (for common cases).

• ...explain the different parts of the definition of IND-OT-CPA, i.e., why the definition is the way it is.

• ...given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ...explain the different parts of the definition of PRG, i.e., why the definition is the way it is.

• ...given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ...describe how to build a streamcipher from a PRG and sketch the reason for its security.

• ...explain why a streamcipher constructed from a PRG is not IND-CPA secure.

• ...given an encryption scheme that is not IND-OT-CPA secure, explain why it is not IND-OT-CPA secure by giving an attack.

• [#SKIP#] ...describe how to make a PRG suitable for a streamcipher from a PRG that has 1-bit expansion.

• [#SKIP#] ...give an intuitive explanation why the resulting scheme is a PRG.

• ...describe what a block cipher is.

• ...describe what a Feistel network is.

• ...explain how to decrypt a ciphertext encrypted with a Feistel network.
• ...given the description of a block cipher similar in structure to DES, identify the objectives behind different parts of the block cipher (e.g., why is the key XORed in at a given place, why do we have a key schedule, why are certain bits permuted, why are S-boxes applied, why is the construction repeated, etc.)

• ...describe the meet-in-the-middle attack.

• ...explain why Double DES is not a big improvement over DES in terms of security while 3DES is.

• ...in variants of 3DES, estimate (very roughly) the number of steps needed for a meet-in-the-middle attack (e.g., 4DES, 3DES with repetitions of the key, 3DES with different key lengths in the different parts, etc.)

• ...explain the different parts of the definition of strong PRP, i.e., why the definition is the way it is.

• ...given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ...given an encryption scheme that is not a strong PRP, explain why it is not a strong PRP (e.g., by giving an attack).

• ...explain the different parts of the definition of IND-CPA (symmetric case), i.e., why the definition is the way it is.

• ...given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ...given an encryption scheme that is not IND-CPA, explain why it is not IND-CPA (e.g., by giving an attack).

• ...motivate why IND-CPA encryption (i.e., security against chosen-plaintext attacks) is necessary. (I.e., why do we have to assume that the adversary can provide plaintexts of his choosing to be encrypted. – Example setting?)

• ...describe the relation between the different security definitions of encryption schemes (IND-OT-CPA, IND-CPA, strong PRP). Which implies which? Which does not imply the which (separating example)?

• ...determine in which situation which definition is needed and why (e.g., given the description of a use-case, tell which definition is necessary and why).
• ...describe ECB mode (either in formulas, or pictorially in the special case of a message consisting of a few blocks).

• ...explain the security drawbacks of ECB mode.

• ...describe CBC mode (either in formulas, or pictorially in the special case of a message consisting of a few blocks).

• ...explain why it is important that the IV is random in CBC mode. (Give attack for fixed IV against IND-CPA security.)

• [#SKIP#] ...describe CTR mode (either in formulas, or pictorially in the special case of a message consisting of a few blocks).

• [#SKIP#] ...sketch why CTR mode is IND-CPA secure and how it is related to stream ciphers.

• ...tell which of ECB and CBC mode satisfy which security property.

• ...show that none of these is IND-CCA secure by giving an attack.

• ...describe what is the difference between symmetric and public-key cryptography, and what are the advantages of public-key cryptography.

• ...describe text-book RSA.

• ...show that decryption returns the correct message in text-book RSA.

• ...explain the relation between text-book RSA and the RSA assumption (in particular: if the RSA assumption holds, what do we know about the security of text-book RSA?)

• ...describe the ElGamal encryption scheme.

• ...show that decryption returns the correct message in ElGamal.

• ...explain the different parts of the definition of IND-CPA (public key case), i.e., why the definition is the way it is.

• ...given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ...given an encryption scheme that is not IND-CPA, explain why it is not IND-CPA (e.g., by giving an attack).

• ...explain the different parts of the definition of DDH assumption, i.e., why the definition is the way it is.

• ...explain why ElGamal is secure under the DDH assumption (i.e., explain why \(m \cdot h^y \mod p \) hides \(m \) if the DDH assumption holds).
• ... explain what malleability means.
• ... given a malleable encryption scheme (ElGamal or textbook RSA), and a specific setting in which malleability poses a problem, describe an attack that makes use of the malleability. (Similar to the auction example and the chosen ciphertext attack example in Section 7.3.)
• ... explain the different parts of the definition of IND-CCA (public key case), i.e., why the definition is the way it is.
• ... given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)
• ... given an encryption scheme that is not IND-CCA, explain why it is not IND-CCA (e.g., by giving an attack).
• ... explain why IND-CCA security implies that a scheme is not malleable.
• ... explain how hybrid encryption works.
• ... argue (without formal proof) why hybrid encryption is secure.
• ... say under which conditions a hybrid encryption scheme is IND-CPA/IND-CCA secure.
• ... describe collision-resistance.
• ... give examples what collision-resistance is good for.
• ... explain the different parts of the definition of collision-resistance, i.e., why the definition is the way it is.
• ... given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)
• ... given a hash function that is not collision-resistant, explain why it is not collision-resistant (e.g., by giving an attack).
• ... explain what a compression function is.
• ... explain how to construct a hash function from a compression function using the Iterated Hash construction.
• ... say under which conditions Iterated Hash is collision-resistant and which are its limitations (in terms of security).
• ...construct a collision for Iterated Hash (given \(x^* \) with \(F(iv||x^*) = iv \)), potentially under certain additional requirements on the messages that should collide (as long as this does not lead to an attack substantially different from the one in the lecture notes).

• ...explain why the Merkle-Damgård removes the restrictions of Iterated Hash (in terms of security).

• ...for simple variations in the padding of Merkle-Damgård, explain why they are not collision-resistant.

• ...describe the birthday attack, its approximate running time and memory consumption.

• ...explain what a MAC is and what it is for. \textbf{Section 9}

• ...explain the different parts of the definition of EF-CMA (MAC case), i.e., why the definition is the way it is.

• ...given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ...given a MAC that is not EF-CMA, explain why it is not EF-CMA (e.g., by giving an attack).

• ...explain why the naive construction \(MAC(k, m) := H(k||m) \) is insecure (assuming that \(H \) is Merkle-Damgård constructed) by giving an attack.

• ...explain why this (or a similar) attack does not work on the HMAC scheme.

• ...list under which conditions HMAC is EF-CMA secure.

• [#SKIP#] ...explain under which conditions CBC-MAC is secure.

• [#SKIP#] ...show that CBC-MAC is not secure by describing an attack.

• [#SKIP#] ...explain why that attack does not work on DMAC.

• ...tell what properties are needed from a hash function to use it to extend the message space of a MAC without loosing EF-CMA security.

• ...sketch why EF-CMA security is not lost when using a suitable hash function for extending the message space

• ...describe the relation between the PRFs and MACs. Which implies which? Which does not imply the which (separating example)?

• ...explain the different parts of the definition of one-way functions, i.e., \textbf{Section 11} why the definition is the way it is.
• ... given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a function that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ... given a function that is not one-way, explain why it is not one-way (e.g., by giving an attack).

• ... explain why, if the encryption function of an encryption scheme is one-way, this does not make it a good encryption scheme (in terms of security).

• ... list which of the different cryptographic primitives discussed in the lecture (like PRGs, IND-CCA symmetric encryption, IND-CPA public key encryption, etc.) can be constructed from OWFs and which cannot.

• ... explain the random-oracle model / the random-oracle heuristic.
 Section 12

• ... give an example why the random-oracle heuristic is unsound.

• ... given a protocol that is secure in the random-oracle model, and given a sketch of the main argument of the security proof, decide (and justify) whether this is a case where the random-oracle heuristic may or should not be applied (in view of its unsoundness).

• ... explain what a signature is and what it is for.
 Section 13

• ... explain the different parts of the definition of EF-CMA (signature case), i.e., why the definition is the way it is.

• ... given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ... given a signature scheme that is not EF-CMA, explain why it is not EF-CMA (e.g., by giving an attack).

• ... tell what properties are needed from a hash function to use it to extend the message space of a signature scheme without losing EF-CMA security.

• ... sketch why EF-CMA security is not lost when using a suitable hash function for extending the message space

• ... explain how to use text-book RSA as a signature scheme.

• ... show that text-book RSA (as a signature scheme) is not EF-CMA secure by giving an attack.

• ... explain the difference between signatures and one-time signatures.

• ... describe how to construct one-time signatures from one-way functions (Lamport’s scheme).
• . . . sketch why that construction is EF-OT-CMA secure.

• [#SKIP#] . . . describe the chain based construction of stateful signatures from one-time signatures.

• [#SKIP#] . . . explain why that scheme is now a normal signature scheme (as opposed to one-time).

• [#SKIP#] . . . explain what the disadvantages of stateful signatures are.

• . . . sketch the construction of tree-based signatures (no need to cover: usage of PRFs to fix the randomness).

• . . . describe the RSA-FDH scheme.

• . . . explain why the attack that breaks the EF-CMA security of text-book RSA signatures does not break the security of RSA-FDH.

• . . . list under what conditions RSA-FDH is EF-CMA secure (don’t overlook the random oracle).

• . . . discuss what we know about the security of RSA-FDH if we use a real-life hash function instead of a random oracle.

• . . . discuss advantages/disadvantages of symbolic cryptography.

• . . . given a simple protocol, write down the adversary deduction rules.

• . . . given a set of deduction rules, write down the grammar of all messages that can be derived using these rules.

• . . . given a grammar of all messages that can be derived by the adversary, and a security definition, and given a protocol, decide whether the protocol is secure in the symbolic model.

• . . . given a set of deduction rules and a given message, show that the message can be deduced (e.g., by drawing a derivation tree).

• . . . explain what zero-knowledge proofs are useful for.

• . . . given a concrete setting and problem (similar to, e.g., the Peggy-Vendor example) describe how to use ZK proofs for solving the problem.

• . . . explain what zero-knowledge means on a high-level (“the verifier learns nothing” is too high, the role of the simulator has to become clear).

• . . . explain the different parts of the definition of soundness, i.e., why the definition is the way it is.

• . . . describe the graph isomorphism proof system.

• . . . explain why it has soundness (what soundness error?).
• ... explain why a proof system with soundness error $\frac{1}{2}$ is not useful on its own, but can be used to construct a proof system with negligible soundness error.

• [#SKIP#] ... describe roughly how a cache-timing attack works. Section 10

• [#SKIP#] ... given the description of an S-box, compute entries in a linear approximation table. Section 10

• [#SKIP#] ... given a linear approximation table, compute the probability that the XOR of a given set of inputs/outputs of an S-box is 0.

• [#SKIP#] ... given a linear trail and a linear approximation table, compute the probability that the XOR of a given set of plaintext/ciphertext bits is 0.

• Good luck!