Problem 1: Negligible functions

Which of the following facts are true and which are false? Prove your answers.

(a) If \(f \) and \(g \) are negligible, then \(f + g \) is negligible.
(b) If \(f \) and \(g \) are negligible, then \(fg \) is negligible.
(c) If \(f \) is negligible and \(g \) is an arbitrary positive function, then \(f + g \) is negligible.
(d) If \(f \) is negligible and \(c \) is a positive constant, then \(cf \) is negligible.
(e) \(f(n) := 1/n^{10} \). \(f \) is negligible.
(f) \(f(n) := 2^{-n} \). \(f \) is negligible.
(g) If \(\lim_{n \to \infty} f(n) = 0 \), then \(f \) is negligible.
(h) If \(f \) is negligible, then \(\lim_{n \to \infty} f(n) = 0 \).
(i) \(f(n) := 2^{-n} \) for even \(n \) and \(f(n) := 1 \) for odd \(n \). \(f \) is negligible.

Problem 2: One-way functions

Which of the following are one-way functions? Why (short argument, no proof)? (You may assume that the RSA assumption holds. And that \(E_{AES} \) is a PRF.)

Remember that to break a one-way function, it is sufficient to find some preimage, not necessarily the “true” one that was fed into the one-way function.

(a) \(f(x) := 0 \) for all \(x \in \{0,1\}^n \).
(b) \(f(x) := x_1 \ldots x_{n/2} \) for \(x \in \{0,1\}^n \).
(c) \(f(N,e,x) := (N,e,x^e \mod N) \) where the domain of \(f \) is the set of all \((N,e,x) \) where \(N \) is an RSA modulus, \(e \) is relatively prime to \(N \), and \(x \in \{0,\ldots,N-1\} \).
(d) \(f(N,e,x) := x^e \mod N \) where the domain of \(f \) is the set of all \((N,e,x) \) where \(N \) is an RSA modulus, \(e \) is relatively prime to \(N \), and \(x \in \{0,\ldots,N-1\} \).
(e) \(f(k,x) := E_{AES}(k,x) \).
(f) \(f(x) := g(x)\|g(x) \) where \(g \) is a one-way function.

Note: Here (and in (g)), the question is whether \(f \) would be a one-way function for *every* one-way function \(g \).

(g) \(f(x) := g(g(x)) \) where \(g \) is a one-way function.

Hint: The first thought here might be wrong. Remember that a one-way function \(g \) might not be surjective. E.g., the first half of \(g(x) \) might always consist of zeroes.

Problem 3: Merkle-Damgård and the ROM

In the lecture, I explained the random oracle heuristic which suggests to model a hash function as a random oracle. It should be added that a (preferable) refinement of this heuristic is to model the compression function itself as a random oracle, and to model the hash function as some function constructed based on that compression function (using, e.g., Merkle-Damgård). The reason behind this is that constructions like Merkle-Damgård do not produce functions that behave like random functions (even if the underlying compression function is a random function).

Give an example why a hash function \(H \) constructed using the Merkle-Damgård construction should not be modeled as a random oracle. More precisely, find a cryptographic scheme which is secure when \(H \) is a random oracle (no security proof needed), but which is insecure when \(H \) is a Merkle-Damgård construction (even if the compression function is a random oracle).

Hint: Consider the construction of MACs from hash functions that is insecure when the hash function is constructed with Merkle-Damgård.