Problem 1: Malleability of ElGamal

Remember the auction example from the lecture: Bidder 1 produces a ciphertext \(c = E(pk, bid_1) \) where \(E \) is the ElGamal encryption algorithm (using integers mod \(p \) as the underlying group). Given \(c \), Bidder 2 can then compute \(c' \) such that \(c' \) decrypts to \(2 \cdot bid_1 \mod p \). This allows Bidder 2 to consistently bid twice as much as Bidder 1.\(^1\)

Now refine the attack. You may assume that \(bid_1 \) is the amount of Cents Bidder 1 is willing to pay. And you can assume that Bidder 1 will always bid a whole number of Euros. (I.e., \(bid_1 \) is a multiple of 100.)

Show how Bidder 2 can consistently overbid Bidder 1 by only 1\%. What happens to your attack if Bidder 1 suddenly does not bid a whole number of Euros?

Hint: Remember that modulo \(p \), one can efficiently find inverses. For example, one can find a number \(a \) such that \(a \cdot 100 \equiv 1 \mod p \).

Problem 2: Textbook RSA and hybrid encryption

A common variant of textbook RSA is the following: During key generation, the modulus \(N \) is chosen as usual. We chose \(e \) as \(e := 3 \) (instead of random). Then \(d \) is chosen with \(ed \equiv 1 \mod \varphi(N) \) (as usual). This is implemented by the Python functions \(\text{rsa_keygen, rsa_enc, rsa_dec} \) below.

We use this in a “hybrid encryption”, which first picks an AES key \(k \), encrypts it with RSA, and then encrypts the actual message with AES using the key \(k \). (Functions \(\text{hyb_enc, hyb_dec} \).)

Your task is to write an adversary that, given the public key \(pk \), and the hybrid encryption \(c \) of some message \(m \), finds \(m \). That is, fill in the function body of the function \(\text{adv} \) below so that the function \(\text{test_adv} \) prints \(\text{Success} \). The adversary broke the scheme.

Hint: We discussed in the practice the problem with RSA with \(e = 3 \) when RSA-encrypting short messages.

(You find the following file on the lecture webpage, too.)

\[
\begin{align*}
\text{# Use "pip install sympy" (possibly with sudo) to install sympy} \\
\text{# And "Crypto" might need "pip install pycrypto" if it’s not installed}
\end{align*}
\]

\(^1\)As long as \(bid_1 < p/2 \), that is. Otherwise \(2 \cdot bid_1 \mod p \) will not be twice as much as \(bid_1 \). However, for large \(p \), \(bid_1 \geq p/2 \) is an unrealistically high bid.
import sympy, math, Crypto, random

prime_len = 1024

def egcd(a, b):
 if a == 0:
 return (b, 0, 1)
 else:
 g, y, x = egcd(b % a, a)
 return (g, x - (b // a) * y, y)

def modinv(a, m):
 g, x, y = egcd(a, m)
 if g != 1:
 raise Exception('modular inverse does not exist')
 else:
 return x % m

def rsa_keygen():
 while True:
 try:
 p = sympy.ntheory.generate.randprime(2**prime_len,2**(prime_len+1))
 q = sympy.ntheory.generate.randprime(2**prime_len,2**(prime_len+1))
 e = 3
 N = p*q
 phiN = (p-1)*(q-1)
 pk=(N,e)
 sk=(N,modinv(e,phiN))
 return (pk,sk)
 except Exception as e:
 pass

Rough ad-hoc algorithm, not optimized

def exp_mod(a,e,N):
 res = 1
 b = a
 i = 0
 while e>=2**i: # Invariant: b=a**(2**i)
 if e & 2**i != 0:
 e -= 2**i
 res = (res*b) % N
 b=(b*b) % N
 i += 1
assert e==0
return res

Just a test
assert exp_mod(23123, 323, 657238293) == ((23123**323) % 657238293)

def rsa_enc(pk, m):
 (N, e) = pk
 return exp_mod(m, e, N)

def rsa_dec(sk, c):
 (N, d) = sk
 return exp_mod(c, d, N)

def int_to_bytes(i, len):
 # Not optimized
 res = b"
 for j in range(len):
 res += chr(i%256)
 i = i>>8
 return res

def aes_cbc_enc(k, m):
 from Crypto.Cipher import AES
 from Crypto import Random
 assert len(m)%AES.block_size == 0
 k = int_to_bytes(k, AES.block_size)
 iv = Random.new().read(AES.block_size)
 cipher = AES.new(k, AES.MODE_CBC, iv)
 return iv + cipher.encrypt(m)

def aes_cbc_dec(k, m):
 from Crypto.Cipher import AES
 from Crypto import Random
 k = int_to_bytes(k, AES.block_size)
 iv = m[:AES.block_size]
 cipher = AES.new(k, AES.MODE_CBC, iv)
 return cipher.decrypt(m[AES.block_size:]),

Just a test
assert aes_cbc_dec(2123414234, aes_cbc_enc(2123414234, 'hello there test')) == 'hello there test'

def hyb_enc(pk, m):
 k = random.getrandbits(256)
aes_k_m = aes_cbc_enc(k,m)
assert aes_cbc_dec(2123414234,aes_cbc_enc(k,m))
assert m == aes_cbc_dec(k,aes_k_m)
rsa_pk_k = rsa_enc(pk,k)
return (rsa_pk_k,aes_k_m)

def hyb_dec(sk,c):
 (c1,c2) = c
 k = rsa_dec(sk,c1)
 m = aes_cbc_dec(k,c2)
 return m

def adv(pk,c):
 m = "put the right message here"
 return m

def test_adv():
 (pk,sk) = rsa_keygen()
 # Generate a message m
 m = "a few random words to be shuffle randomly to get some interesting ciphertext not random.shuffle(m)
 m = " ".join(m)
 # Get a key pair
 (pk,sk) = rsa_keygen()
 # Encrypt m
 c = hyb_enc(pk,m)
 # Just a test
 assert m == hyb_dec(sk,c)
 # Call the adversary, let him guess m
 m2 = adv(pk,c)
 # Check
 if m==m2:
 print "Success. The adversary broke the scheme"
 else:
 print "*** Failure ***"
test_adv()