The exam will be open book / open notes / open screenshot (but no laptops or other electronic/communicating devices). Section numbers refer to the lecture notes.

You should be able to...

• ...explain how to use frequency analysis to break the Vigenere cipher and a substitution cipher.
 [Section 1]

• ...to apply frequency analysis to break the Vigenere and the substitution cipher. (In simple cases where no big computations are needed.)
 [Section 2]

• ...distinguish between ciphertext-only attacks, known-plaintext attacks, chosen-plaintext attacks, and chosen-ciphertext attacks.
 [Section 2]

• ...determine whether an encryption scheme has perfect secrecy.
 [Section 3]

• ...explain the drawbacks of the one-time pad (both in terms of practicality and security).
 [Section 3]

• ...construct an attack on a scheme that uses the one-time pad incorrectly.
 [Section 3]

• ...list what disadvantages are unavoidable in schemes with perfect secrecy.
 [Section 3]

• ...for any part of the definition of perfect secrecy, explain why this part of the definition is as it is.
 [Section 3]

• ...describe the components of a stream cipher.
 [Section 4]

• ...explain which properties a key stream should have and why.
 [Section 4]

• ...describe how an LFSR is constructed and how it can be used to build a streamcipher (an insecure one, though).
 [Section 4]

• ...from a fragment of the keystream produced by an LFSR derive the initial state (key) of the LFSR.
 [Section 4]

• ...describe the advantages and disadvantages of “best-effort design” and provable security.
 [Section 4]

• ...give examples of both.
• ...explain the different parts of the definition of IND-OT-CPA, i.e., why
the definition is the way it is.

• ...given a variant of the definition in which one of the parts are changed,
give an example why this leads to undesirable consequences. (E.g., by
describing a scheme that satisfies the definition while having drawbacks
that are excluded by the original definition.)

• ...explain the different parts of the definition of PRG, i.e., why the defi-
nition is the way it is.

• ...given a variant of the definition in which one of the parts are changed,
give an example why this leads to undesirable consequences. (E.g., by
describing a scheme that satisfies the definition while having drawbacks
that are excluded by the original definition.)

• ...describe how to build a streamcipher from a PRG and sketch the reason
for its security.

• ...explain why a streamcipher constructed from a PRG is not IND-CPA
secure.

• ...given an encryption scheme that is not IND-OT-CPA secure, explain
why it is not IND-OT-CPA by giving an attack.

• ...describe what a block cipher is.

• ...describe what a Feistel network is.

• ...explain how to decrypt a ciphertext encrypted with a Feistel network.

• ...given the description of a block cipher similar in structure to DES,
identify the objectives behind different parts of the block cipher (e.g., why
is the key XORed in at a given place, why do we have a key schedule, why
are certain bits permuted, why are S-boxes applied, why is the construction
repeated, etc.)

• ...describe the meet-in-the-middle attack.

• ...explain why Double DES is not a big improvement over DES in terms
of security while 3DES is.

• ...in variants of 3DES, estimate (very roughly) the number of steps
needed for a meet-in-the-middle attack (e.g., 4DES, 3DES with repetitions
of the key, 3DES with different key lengths in the different parts,
etc.)

• ...explain the different parts of the definition of strong PRP, i.e., why the
definition is the way it is.
• ...given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ...given an encryption scheme that is not a strong PRP, explain why it is not a strong PRP (e.g., by giving an attack).

• ...explain the different parts of the definition of IND-CPA (symmetric case), i.e., why the definition is the way it is.

• ...given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ...given an encryption scheme that is not IND-CPA, explain why it is not IND-CPA (e.g., by giving an attack).

• ...motivate why IND-CPA encryption (i.e., security against chosen-plaintext attacks) is necessary. (I.e., why do we have to assume that the adversary can provide plaintexts of his choosing to be encrypted. – Example setting?)

• ...describe the relation between the different security definitions of encryption schemes (IND-OT-CPA, IND-CPA, strong PRP). Which implies which? Which does not imply the which (separating example)?

• ...determine in which situation which definition is needed and why (e.g., given the description of a use-case, tell which definition is necessary and why).

• ...describe ECB mode (either in formulas, or pictorially in the special case of a message consisting of a few blocks).

• ...explain the security drawbacks of ECB mode.

• ...describe CBC mode (either in formulas, or pictorially in the special case of a message consisting of a few blocks).

• ...explain why it is important that the IV is random in CBC mode. (Give attack for fixed IV against IND-CPA security.)

• ...tell which of ECB and CBC mode satisfy which security property.

• ...show that none of these is IND-CCA secure by giving an attack.

• ...describe what is the difference between symmetric and public-key cryptography, and what are the advantages of public-key cryptography.

• ...describe text-book RSA.
• . . . show that decryption returns the correct message in text-book RSA.
• . . . explain the relation between text-book RSA and the RSA assumption (in particular: if the RSA assumption holds, what do we know about the security of text-book RSA).
• . . . describe the ElGamal encryption scheme.
• . . . show that decryption returns the correct message in ElGamal.
• . . . explain the different parts of the definition of IND-CPA (public key case), i.e., why the definition is the way it is.
• . . . given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)
• . . . given an encryption scheme that is not IND-CPA, explain why it is not IND-CPA (e.g., by giving an attack).
• . . . explain the different parts of the definition of DDH assumption, i.e., why the definition is the way it is.
• . . . explain why ElGamal is secure under the DDH assumption (i.e., explain why $m \cdot h^y \mod p$ hides m if the DDH assumption holds).
• . . . explain what malleability means.
• . . . given a malleable encryption scheme (ElGamal or text-book RSA), and a specific setting in which malleability poses a problem, describe an attack that makes use of the malleability. (Similar to the auction example and the chosen ciphertext attack example in Section 7.3)
• . . . explain the different parts of the definition of IND-CCA (public key case), i.e., why the definition is the way it is.
• . . . given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)
• . . . given an encryption scheme that is not IND-CCA, explain why it is not IND-CCA (e.g., by giving an attack).
• . . . explain why IND-CCA security implies that a scheme is not malleable.
• . . . explain how hybrid encryption works.
• . . . argue (without formal proof) why hybrid encryption is secure.
• . . . say under which conditions a hybrid encryption scheme is IND-CPA/IND-CCA secure.

• . . . describe collision-resistance. \textcolor{red}{\textbf{Section 8}}

• . . . give examples what collision-resistance is good for.

• . . . explain the different parts of the definition of collision-resistance, i.e., why the definition is the way it is.

• . . . given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• . . . given a hash function that is not collision-resistant, explain why it is not collision-resistant (e.g., by giving an attack).

• . . . explain what a compression function is.

• . . . explain how to construct a hash function from a compression function using the Iterated Hash construction.

• . . . say under which conditions Iterated Hash is collision-resistant and which are its restrictions (in terms of security).

• . . . construct a collision for Iterated Hash (given x^* with $F(iv || x^*) = iv$), potentially under certain additional requirements on the messages that should collide (as long as this does not lead to an attack substantially different from the one in the lecture notes).

• . . . explain why the Merkle-Damgård removes the restrictions of Iterated Hash (in terms of security).

• . . . for simple variations in the padding of Merkle-Damgård, explain why they are not collision-resistant.

• . . . describe the birthday attack, its approximate running time and memory consumption.

• . . . explain what a MAC is and what it is for. \textcolor{red}{\textbf{Section 9}}

• . . . explain the different parts of the definition of EF-CMA (MAC case), i.e., why the definition is the way it is.

• . . . given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• . . . given a MAC that is not EF-CMA, explain why it is not EF-CMA (e.g., by giving an attack).
• ...explain why the naive construction $MAC(k, m) := H(k || m)$ is insecure (assuming that H is Merkle-Damgård constructed) by giving an attack.

• ...explain why this (or a similar) attack does not work on the HMAC scheme.

• ...list under which conditions HMAC is EF-CMA secure.

• ...explain under which conditions CBC-MAC is a secure.

• ...show that CBC-MAC is not secure by describing an attack.

• ...explain why that attack does not work on DMAC.

• ...tell what properties are needed from a hash function to use it to extend the message space of a MAC without losing EF-CMA security.

• ...sketch why EF-CMA security is not lost when using a suitable hash function for extending the message space.

• ...describe the relation between the PRFs and MACs. Which implies which? Which does not imply the which (separating example)?

• ...explain the different parts of the definition of one-way functions, i.e., why the definition is the way it is.

• ...given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a function that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ...given a function that is not one-way, explain why it is not one-way (e.g., by giving an attack).

• ...explain why, if the encryption function of an encryption scheme is one-way, this does not make it a good encryption scheme (in terms of security).

• ...explain the random-oracle model / the random-oracle heuristic.

• ...explain what a signature is and what it is for.

• ...explain the different parts of the definition of EF-CMA (signature case), i.e., why the definition is the way it is.

• ...given a variant of the definition in which one of the parts are changed, give an example why this leads to undesirable consequences. (E.g., by describing a scheme that satisfies the definition while having drawbacks that are excluded by the original definition.)

• ...given a signature scheme that is not EF-CMA, explain why it is not EF-CMA (e.g., by giving an attack).
• ...tell what properties are needed from a hash function to use it to extend the message space of a signature scheme without losing EF-CMA security.

• ...sketch why EF-CMA security is not lost when using a suitable hash function for extending the message space.

• ...explain how to use text-book RSA as a signature scheme.

• ...show that text-book RSA (as a signature scheme) is not EF-CMA secure by giving an attack.

• ...explain the difference between signatures and one-time signatures.

• ...describe how to construct one-time signatures from one-way functions (Lamport’s scheme).

• ...sketch why that construction is EF-OT-CMA secure.

• ...describe the RSA-FDH scheme.

• ...explain why the attack that breaks the EF-CMA security of text-book RSA signatures does not break the security of RSA-FDH.

• ...list under what conditions RSA-FDH is EF-CMA secure (don’t overlook the random oracle).

• ...discuss what we know about the security of RSA-FDH if we use a real-life hash function \(H \) instead of a random oracle.

• ...discuss advantages/disadvantages of symbolic cryptography.

• ...given a simple protocol, write down the adversary deduction rules.

• ...given a set of deduction rules, write down the grammar of all messages that can be derived using these rules.

• ...given a grammar of all messages that can be derived by the adversary, and a security definition, and given a protocol, decide whether the protocol is secure in the symbolic model.

• ...given a set of deduction rules and a given message, show that the message can be deduced (e.g., by drawing a derivation tree).

• ...explain what zero-knowledge proofs are useful for.

• ...given a concrete setting and problem (similar to, e.g., the Peggy-Vendor example) describe how to use ZK proofs for solving the problem.

• ...explain what zero-knowledge means on a high-level (“the verifier learns nothing” is too high, the role of the simulator has to become clear).

• ...explain the different parts of the definition of soundness, i.e., why the definition is the way it is.
• ...describe the graph isomorphism proof system.

• ...explain why it has soundness (what soundness error?).

• ...explain why a proof system with soundness error $\frac{1}{2}$ is not useful on its own, but can be used to construct a proof system with negligible soundness error.

• Good luck!