System context

- Subject facet
- Usage facet
- IT system facet
- Development facet

Core activities

- Documentation
- Elicitation
- Negotiation

Requirements artefacts

- Goals
- Scenarios
- Solution oriented requirements

Validation

Management
Achieve progress in the **specification dimension** by eliciting new requirements as well as detailed information about existing requirements

- Elicit all requirements at the level of detail for the system to be developed
“Requirements Lifecycle”

Source: Adapted from Pohl, CAISE 1993

Specification

complete
fair
vague

Representation

informal
semi-formal
formal

common view

personal view
Table of Contents

• Where do we start?
• Stakeholders
• Requirements elicitation technique

• Prof. Steve Easterbrook, Requirements engineering course, University of Toronto
Table of Contents

• Where do we start?
 • Stakeholders
 • Requirements elicitation techniques

• Prof. Steve Easterbrook, Requirements engineering course, University of Toronto
Requirements Elicitation

• **Starting point**
 – Some notion that there is a “problem” that needs solving
 • e.g. dissatisfaction with the current state of affairs
 • e.g. a new business opportunity
 • e.g. a potential saving of cost, time, resource usage, etc.

 – A requirements analyst is an **agent of change**
Requirements Elicitation

The requirements analyst must:

- identify the “problem”/”opportunity“
 - Which problem needs to be solved? (identify problem Boundaries)
 - Where is the problem? (understand the Context/Problem Domain)
 - Whose problem is it? (identify Stakeholders)
 - Why does it need solving? (identify the stakeholders’ Goals)
 - How might a software system help? (collect some Scenarios)
 - When does it need solving? (identify Development Constraints)
 - What might prevent us solving it? (identify Feasibility and Risk)

- and become an expert in the problem domain
 - although ignorance is important too -- “the intelligent ignoramus”
Where do we start?

• **Identify the problem**
 – what is the objective of the project?
 – the “vision” of those who are pushing for it?
 • e.g., “Meeting scheduling is too costly right now”

• **Scope the problem**
 – given the vision, how much do we tackle?
 • e.g. “Build a system that schedules meetings”, …or…
 • e.g. “Build a system that maintains people’s calendars” …or…

• **Identify solution scenarios**
 – given the problem, what is the appropriate business process for solving it?
 • e.g. “Anyone who wants to schedule a meeting goes to the secretary, gives details and the secretary handles the rest”, …or…

• **Scope the solution**
 – Given a business process, what parts should be automated, and how?
 • e.g. “Computer takes in scheduling request details, outputs a solution” …or…
 • e.g. “Solution arrived at interactively by secretary and computer” …or…
Identifying the Problem

• **Vague problem stated by the customer:**
 - E.g. university textbook store:
 • Manager wants to computerize the book order forms filled out by instructors;
 - E.g. A large insurance company:
 • Claims manager wants to cut down the average time it takes to process an insurance claim from 2 months to 2 weeks
 - E.g. A telecommunications company:
 • CIO wants to integrate the billing system with customer record systems of several affiliates, so there is only one billing system...
 - E.g. Large Government Aerospace Agency:
 • The president wants to send a manned mission to Mars by the year 2020

• **Often you only see symptoms rather than causes:**
 - E.g. “Ontario patients needing X-ray scans have to wait for months”
British Planes

https://en.wikipedia.org/wiki/Abraham_Wald
• The holes in the returning aircraft represent areas where a bomber could take damage and still return home safely

• The Navy should reinforce the areas where the returning aircraft were unscathed, since those were the areas that, if hit, would cause the plane to be lost
Difficulties of Elicitation

• **Thin spread of domain knowledge**
 – The knowledge might be distributed across many sources
 • It is rarely available in an explicit form (i.e. not written down)
 – There will be conflicts between knowledge from different sources
 • Remember the principle of complementarity!

• **Tacit knowledge (The “say-do” problem)**
 – People find it hard to describe knowledge they regularly use

• **Limited Observability**
 – The problem owners might be too busy coping with the current system
 – Presence of an observer may change the problem
 • E.g. Probe Effect; Hawthorne Effect

• **Bias**
 – People may not be free to tell you what you need to know
 – People may not want to tell you what you need to know
 • The outcome will affect them, so they may try to influence you (hidden agendas)
Example

• Loan approval department in a large bank
 – The analyst is trying to elicit the rules and procedures for approving a loan

• Why this might be difficult:
 – Implicit knowledge:
 • There is no document in which the rules for approving loans are written down
 – Conflicting information:
 • Different bank staff have different ideas about what the rules are
 – Say-do problem:
 • The loan approval process described to you by the loan approval officers is quite
different from your observations of what they actually do
 – Probe effect:
 • The loan approval process used by the officers while you are observing is
different from the one they normally use
 – Bias:
 • The loan approval officers fear that your job is to computerize their jobs out of
existence, so they are deliberately emphasizing the need for case-by-case
discretion (to convince you it has to be done by a human!)
Bias

• What is bias?
 – Bias only exists in relation to some reference point
 • can there ever be “no bias”?
 – All views of reality are filtered
 – All decision making is based partly on personal values

• Types of bias:
 – Motivational bias
 • expert makes accommodations to please the interviewer or some other audience
 – Observational bias
 • Limitations on our ability to accurately observe the world
 – Cognitive bias
 • Mistakes in use of statistics, estimation, memory, etc.
 – Notational bias
 • Terms used to describe a problem may affect our understanding of it

Examples of Bias

– Social pressure
 response to verbal and non-verbal cues from interviewer
– Group think
 response to reactions of other experts
– Impression management
 response to imagined reactions of managers, clients,…
– Wishful thinking
 response to hopes or possible gains.
– Appropriation
 Selective interpretation to support current beliefs.
– Misrepresentation
 expert cannot accurately fit a response into the requested response mode
– Anchoring
 contradictory data ignored once initial solution is available
– Inconsistency
 assumptions made earlier are forgotten
– Availability
 some data are easier to recall than others
– Underestimation of uncertainty
 tendency to underestimate by a factor of 2 or 3.
Table of Contents

• Where do we start?
 • **Stakeholders**
 • Requirements elicitation techniques

• Prof. Steve Easterbrook, Requirements engineering course, University of Toronto
Stakeholders

• **Stakeholder analysis:**
 – Identify all the people who must be consulted during information acquisition

• **Example stakeholders**
 – **Users**
 • concerned with the features and functionality of the new system
 – **Designers**
 • want to build a perfect system, or reuse existing code
 – **Systems analysts**
 • want to “get the requirements right”
 – **Training and user support staff**
 • want to make sure the new system is usable and manageable
 – **Business analysts**
 • want to make sure “we are doing better than the competition”
 – **Technical authors**
 • will prepare user manuals and other documentation for the new system
 – **The project manager**
 • wants to complete the project on time, within budget, with all objectives met.
 – **“The customer”**
 • Wants to get best value for money invested!
Requirements Elicitation

THE PROJECT REQUIREMENTS ARE FORMING IN MY MIND.

NOW THEY'RE CHANGING... CHANGING... CHANGING... OKAY. NO, WAIT... CHANGING... CHANGING... DONE.

NATURALLY, I WON'T BE SHARING ANY OF THESE THOUGHTS WITH ENGINEERING.

I BUDGETED FOR SOME GOONS TO BEAT IT OUT OF YOU.
Table of Contents

• Where do we start?
• Stakeholders

• Requirements elicitation techniques
 – Background reading
 – Hard data analysis
 – Interviews
 – Questionnaire
 – Meetings
 – Group elicitation techniques
 – Participant observation

• Prof. Steve Easterbrook, Requirements engineering course, University of Toronto
Elicitation Techniques

- **Traditional techniques**
 - Reading existing documents
 - Analyzing hard data
 - Interviews
 - Open-ended
 - Structured
 - Surveys / Questionnaires
 - Meetings

- **Collaborative techniques**
 - Focus Groups
 - Brainstorming
 - JAD/RAD workshops
 - Prototyping
 - Participatory Design

- **Contextual (social) approaches**
 - Ethnographic techniques
 - Participant Observation
 - Enthnmethodology
 - Discourse Analysis
 - Conversation Analysis
 - Speech Act Analysis
 - Sociotechnical Methods
 - Soft Systems Analysis

- **Cognitive techniques**
 - Task analysis
 - Protocol analysis
 - Knowledge Acquisition Techniques
 - Card Sorting
 - Laddering
 - Repertory Grids
 - Proximity Scaling Techniques
Background Reading

• **Sources of information:**
 – company reports, organization charts, policy manuals, job descriptions, reports, documentation of existing systems, etc.

• **Advantages:**
 – Helps the analyst to get an understanding of the organization before meeting the people who work there
 – Helps to prepare for other types of fact finding
 • e.g. by being aware of the business objectives of the organization.
 – may provide detailed requirements for the current system

• **Disadvantages:**
 – written documents often do not match up to reality
 – Can be long-winded with much irrelevant detail

• **Appropriate for**
 – Whenever you not familiar with the organization being investigated
“Hard Data” and Sampling

• **Hard data includes facts and figures...**
 – Forms, Invoices, financial information,…
 – Reports used for decision making,…
 – Survey results, marketing data,…

• **Sampling**
 – Sampling used to select representative set from a population
 • Purposive Sampling - choose the parts you think are relevant without worrying about statistical issues
 • Simple Random Sampling - choose every kth element
 • Stratified Random Sampling - identify strata and sample each
 • Clustered Random Sampling - choose a representative subpopulation and sample it
 – Sample Size is important
 • balance between cost of data collection/analysis and required significance

• **Process:**
 – Decide what data should be collected - e.g. *banking transactions*
 – Determine the population - e.g. *all transactions at 5 branches over one week*
 – Choose type of sample - e.g. *simple random sampling*
 – Choose sample size - e.g. *every 20th transaction*
Example of hard data

• Questions:
 – What does this data tell you?
 – What would you do with this data?
Interviews

• **Types:**
 – Structured - agenda of fairly open questions
 – Open-ended - no pre-set agenda

• **Advantages**
 – Rich collection of information
 – Good for uncovering opinions, feelings, goals, as well as hard facts
 – Can probe in depth, & adapt follow-up questions to what the person tells you

• **Disadvantages**
 – Large amount of qualitative data can be hard to analyze
 – Hard to compare different respondents
 – Interviewing is a difficult skill to master

Source: Adapted from Goguen and Linde, 1993, p154.
Interviewing Tips

• **Starting off…**
 – Begin the interview with an innocuous topic to set people at ease
 • e.g. the weather, the score in last night’s hockey game
 • e.g. comment on an object on the person’s desk: “My,… what a beautiful photograph! Did you take that?”

• **Ask if you can record the interview**
 – Make sure the tape recorder is visible
 – Say that they can turn it off at any time.

• **Ask easy questions first**
 – perhaps personal information
 • e.g. “How long have you worked in your present position?”

• **Follow up interesting leads**
 – e.g. if you hear something that indicates your plan of action may be wrong,
 • e.g., “Could we pursue what you just said a little further?”

• **Ask open-ended questions towards the end**
 • e.g. “Is there anything else you would like to add?”
Questionnaires

• **Advantages**
 – Can quickly collect info from large numbers of people
 – Can be administered remotely
 – Can collect attitudes, beliefs, characteristics

• **Disadvantages**
 – Simplistic (presupposed) categories provide very little context
 • No room for users to convey their real needs

• **Watch for:**
 – Bias in sample selection
 – Bias in self-selecting respondents
 – Small sample size (lack of statistical significance)
 – Open ended questions (very hard to analyze!)
 – Leading questions ("have you stopped beating your wife?")
 – Appropriation ("What is this a picture of?")
 – Ambiguous questions (i.e. not everyone is answering the same question)

Source: Adapted from Goguen and Linde, 1993, p154.
Meetings

• **Used for summarization and feedback**
 - E.g. meet with stakeholders towards the end of each stage:
 - to discuss the results of the information gathering stage
 - to conclude on a set of requirements
 - to agree on a design etc.
 - Use the meeting to confirm what has been learned, talk about findings

• **Meetings are an important managerial tool**
 - Used to move a project forward.
 - Every meeting should have a clear objective:
 - E.g. presentation, problem solving, conflict resolution, progress analysis, gathering and merging of facts, training, planning,...
 - Plan the meeting carefully:
 - Schedule the meeting and arrange for facilities
 - Prepare an agenda and distribute it well in advance
 - Keep track of time and agenda during the meeting
 - Follow up with a written summary to be distributed to meeting participants
 - Special rules apply for formal presentations, walkthroughs, brainstorming, etc.
Group Elicitation Techniques

• **Types:**
 – Focus Groups
 – Brainstorming

• **Advantages**
 – More natural interaction between people than formal interview
 – Can gauge reaction to stimulus materials (e.g. mock-ups, storyboards, etc.)

• **Disadvantages**
 – May create unnatural groups (uncomfortable for participants)
 – Danger of Groupthink
 – May only provide superficial responses to technical questions
 – Requires a highly trained facilitator

• **Watch for**
 – sample bias
 – dominance and submission
Joint/Rapid Application Development

- **JAD & RAD Principles:**
 - Group Dynamics - use workshops instead of interviews
 - Visual Aids
 - Lots of visualization media, e.g. wall charts, large monitors, graphical interfaces
 - Organized, Rational Process
 - Techniques such as brainstorming and top-down analysis
 - WYSIWYG Documentation Approach
 - each JAD session results in a document which is easy to understand and is created and agreed upon during the session

- **Notes:**
 - Choose workshop participants carefully
 - they should be the best people possible representing various stakeholder groups
 - Workshop should last 3-5 days.
 - Must turn a group of participants into a team - this takes 1-2 days.
 - Session leader makes sure each step has been completed thoroughly.
 - Session leader steps in when there are differences of opinion - “open issues”.
 - Meeting room should be well-equipped for presentations, recording etc.
Participant Observation

• **Approach**
 – Observer spends time with the subjects
 • Joining in long enough to become a member of the group
 • Hence appropriate for longitudinal studies

• **Advantages**
 – Contextualized;
 – Reveals details that other methods cannot

• **Disadvantages**
 – Extremely time consuming!
 – Resulting ‘rich picture’ is hard to analyze
 – Cannot say much about the results of proposed changes

• **Watch for**
 – going native!
Suitability of the Techniques for Sub-activities

<table>
<thead>
<tr>
<th>Suitability of the techniques for the sub-activities</th>
<th>Identifying requirements sources</th>
<th>Eliciting existing requirements</th>
<th>Developing new and innovating requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique</td>
<td>Effort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interview</td>
<td>Medium to high</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Workshop</td>
<td>High to very high</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Focus groups</td>
<td>Medium to high</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Observation</td>
<td>High to very high</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Questionnaire</td>
<td>Low to medium</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Perspective-based reading</td>
<td>Medium to high</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Combine Different Techniques

Background reading (e.g., Internet?)

(Initial) Meeting

Hard Data analysis

Brainstorming

Interviews

Meeting

Meeting

Joint/Rapid Development

...
Elicitation technique Selection: How do experts do it

- Collaborative Sessions
 - Such as joint application development, brainstorming, group sessions
- Interviewing
- Team-building
- Ethnography
- Issue list
- Models
- Questionnaire

- Data gathering from existing systems
- Requirements categorization
- Conflict awareness and resolution
- Prototyping
- Role playing
- Formal methods
- Extreme programming
Document elicited knowledge!
Documenting requirements artefacts

Diagram:

- **Identifier** (1)
- **Description** (1)
- **Requirements artefact**
 - **Goal** (1..*), **Solution-oriented requirement** (1..*), **Scenario** (1..*)
 - **Example of satisfaction**
 - **Complete, disjoint**
 - **Derived from**
 - **Contributes to realisation of**
 - **Is realised by**
- **Criticality** (1)
- **Priority**
- **Risk**
Take Home!

• Where do we start?
• Stakeholders
• Requirements elicitation techniques
 – Background reading
 – Hard data analysis
 – Interviews
 – Questionnaire
 – Meetings
 – Group elicitation techniques
 – Participant observation