Large-scale data processing on the Cloud – Lecture 3

MapReduce Algorithms

Satish Srirama

Some material adapted from slides by Jimmy Lin, 2008 (licensed under Creation Commons Attribution 3.0 License)
Outline

• MapReduce algorithms
• How to write MR algorithms
Shuffle and Sort: aggregate values by keys

map

k₁v₁ k₂v₂ k₃v₃ k₄v₄ k₅v₅ k₆v₆

map

map

map

combine

combine

combine

combine

partition

partition

partition

partition

Shuffle and Sort: aggregate values by keys

reduce

reduce

reduce

r₁s₁ r₂s₂ r₃s₃
Hadoop Usage Patterns

• Extract, transform, and load (ETL)
 – Perform aggregations, transformation, normalizations on the data (e.g. Log files) and load into RDBMS/ data mart

• Reporting and analytics
 – Run ad-hoc queries, analytics and data mining operations on large data

• Data processing pipelines

• Machine learning & Graph algorithms
 – Implement machine learning algorithms on huge data sets
 – Traverse large graphs and data sets, building models and classifiers
MapReduce Examples

- Distributed Grep
- Count of URL Access Frequency
- Reverse Web-Link Graph
- Term-Vector per Host
- Inverted Index
- Distributed Sort
MapReduce Jobs

• Tend to be very short, code-wise
 – IdentityReducer is very common
• “Utility” jobs can be composed
• Represent a data flow, more so than a procedure
Count of URL Access Frequency

• Processing web access logs
• Very similar to word count
• Map
 – processes logs of web page requests and outputs <URL, 1>
• Reduce
 – adds together all values
 – emits a <URL, total count> pairs
Distributed Grep

• Map
 – Emits a line if it matches a supplied pattern

• Reduce
 – Identity function
 – Just copies the supplied intermediate data to the output
Reverse Web-Link Graph

- **Map**
 - Outputs `<target, source>` pairs
 - for each link to a `target` URL found in a page named `source`.

- **Reduce**
 - Concatenates the list of all source URLs
 - Returns `<target, list(source)>`
Sort: Inputs

- A set of files, one value per line.
- Mapper key is file name, line number
- Mapper value is the contents of the line
Sort Algorithm

• Takes advantage of reducer properties:
 – (key, value) pairs are processed in order by key; reducers are themselves ordered

• Mapper: Identity function for value
 \((k, v) \rightarrow (v, _)\)

• Reducer: Identity function \((k', _) \rightarrow (k', "")\)
Sort: The Trick

- (key, value) pairs from mappers are sent to a particular reducer based on hash(key)
- Must pick the hash function for your data such that
 - $K_1 < K_2 \implies \text{hash}(K_1) < \text{hash}(K_2)$
- Used as a test of Hadoop’s raw speed
Inverted Index: Inputs

- A set of files containing lines of text
- Mapper key is file name, line number
- Mapper value is the contents of the line
Inverted Index Algorithm

• Mapper: For each word in (file, words), map to (word, file)

• Reducer: Identity function
Index MapReduce

• map(pageName, pageText):
 foreach word w in pageText:
 emit Intermediate(w, pageName);
 Done

• reduce(word, values):
 foreach pageName in values:
 AddToOutputList(pageName);
 Done
 emitFinal(FormattedPageListForWord);
Index: Data Flow

Page A
This page contains so much of text

Page B
This page too contains some text

A map output
This : A page : A contains : A so : A much : A of : A text : A

B map output
This : B page : B too : B contains : B some : B text : B

Reduced output
Let us focus much bigger problems
Managing Dependencies

• Remember: Mappers run in isolation
 – You have no idea in what order the mappers run
 – You have no idea on what node the mappers run
 – You have no idea when each mapper finishes

• Tools for synchronization:
 – Ability to hold state in reducer across multiple key-value pairs
 – Sorting function for keys
 – Partitioner
 – Cleverly-constructed data structures
Motivating Example

• Term co-occurrence matrix for a text collection
 – $M = N \times N$ matrix ($N =$ vocabulary size)
 – M_{ij}: number of times i and j co-occur in some context
 (for concreteness, let’s say context = sentence)

• Why?
 – Distributional profiles as a way of measuring semantic distance
 – Semantic distance useful for many language processing tasks
 “You shall know a word by the company it keeps” (Firth, 1957)

 e.g., Mohammad and Hirst (EMNLP, 2006)
MapReduce: Large Counting Problems

• Term co-occurrence matrix for a text collection = specific instance of a large counting problem
 – A large event space (number of terms)
 – A large number of events (the collection itself)
 – Goal: keep track of interesting statistics about the events

• Basic approach
 – Mappers generate partial counts
 – Reducers aggregate partial counts

How do we aggregate partial counts efficiently?
First Try: “Pairs”

• Each mapper takes a sentence:
 – Generate all co-occurring term pairs
 – For all pairs, emit \((a, b) \rightarrow \text{count}\)
•Reducers sums up counts associated with these pairs
• Use combiners!
“Pairs” Analysis

• Advantages
 – Easy to implement, easy to understand

• Disadvantages
 – Lots of pairs to sort and shuffle around (upper bound?)
Another Try: “Stripes”

• Idea: group together pairs into an associative array

 \[(a, b) \to 1\] \[a \to \{ b: 1, c: 2, d: 5, e: 3, f: 2 \}\]

\[(a, c) \to 2\] \[(a, d) \to 5\] \[(a, e) \to 3\] \[(a, f) \to 2\]

• Each mapper takes a sentence:
 – Generate all co-occurring term pairs
 – For each term, emit \[a \to \{ \text{count}_b, \text{count}_c, \text{count}_d \ldots \}\]

• Reducers perform element-wise sum of associative arrays

\[
a \to \{ b: 1, d: 5, e: 3 \} + a \to \{ b: 1, c: 2, d: 2, f: 2 \} = a \to \{ b: 2, c: 2, d: 7, e: 3, f: 2 \}
\]
“Stripes” Analysis

• Advantages
 – Far less sorting and shuffling of key-value pairs
 – Can make better use of combiners

• Disadvantages
 – More difficult to implement
 – Underlying object is more heavyweight
 – Fundamental limitation in terms of size of event space
Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (V3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)
Conditional Probabilities

• How do we compute conditional probabilities from counts?

\[P(B \mid A) = \frac{\text{count}(A, B)}{\text{count}(A)} = \frac{\text{count}(A, B)}{\sum_{B'} \text{count}(A, B')} \]

• How do we do this with MapReduce?
P(B | A): “Pairs”

Reducer holds this value in memory

(a, *) → 32

(a, b₁) → 3
(a, b₂) → 12
(a, b₃) → 7
(a, b₄) → 1

(a, b₁) → 3 / 32
(a, b₂) → 12 / 32
(a, b₃) → 7 / 32
(a, b₄) → 1 / 32

• For this to work:
 – Must emit extra (a, *) for every bₙ in mapper
 – Must make sure all a’s get sent to same reducer (use Partitioner)
 – Must make sure (a, *) comes first (define sort order)
P(B|A): “Stripes”

\[a \rightarrow \{ b_1 : 3, b_2 : 12, b_3 : 7, b_4 : 1, \ldots \} \]

- Easy!
 - One pass to compute \((a, *)\)
 - Another pass to directly compute \(P(B|A)\)
Synchronization in Hadoop

• Approach 1: turn synchronization into an ordering problem
 – Sort keys into correct order of computation
 – Partition key space so that each reducer gets the appropriate set of partial results
 – Hold state in reducer across multiple key-value pairs to perform computation
 – Illustrated by the “pairs” approach

• Approach 2: construct data structures that “bring the pieces together”
 – Each reducer receives all the data it needs to complete the computation
 – Illustrated by the “stripes” approach
Issues and Tradeoffs

• Number of key-value pairs
 – Object creation overhead
 – Time for sorting and shuffling pairs across the network

• Size of each key-value pair
 – De/serialization overhead

• Combiners make a big difference!
 – RAM vs. disk and network
 – Arrange data to maximize opportunities to aggregate partial results
Complex Data Types in Hadoop

• How do you implement complex data types?
• The easiest way:
 – Encoded it as Text, e.g., (a, b) = “a:b”
 – Use regular expressions to parse and extract data
 – Works, but pretty hack-ish
• The hard way:
 – Define a custom implementation of WritableComparable
 – Must implement: readFields, write, compareTo
 – Computationally efficient, but slow for rapid prototyping
This week in lab

• MapReduce for data analysis
• Writing better MapReduce algorithms
Next Lecture

• MapReduce in Information Retrieval
References

• Data-Intensive Text Processing with MapReduce Authors: Jimmy Lin and Chris Dyer

Pages 50-57: Pairs and Stripes problem