Data processing in Apache Spark

Pelle Jakovits

8 October, 2014, Tartu
Outline

• Introduction to Spark
• Resilient Distributed Data (RDD)
• Available data operations
• Examples
• Advantages and Disadvantages
• Frameworks powered by Spark
Spark

- Directed acyclic graph (DAG) engine supports cyclic data flow and in-memory computing.
- Spark works with Scala, **Java** and Python
- Integrated with Hadoop and HDFS
- Extended with tools for SQL-like queries, stream processing and graph processing.
- Uses Resilient Distributed Datasets to abstract data that is to be processed
In-memory distributed computing

(a) Low-latency computations (queries)

(b) Iterative computations
Performance vs Hadoop

Introduction to Spark – Patrick Wendell, Databricks
Performance vs Hadoop

K-Means Clustering

- Hadoop: 155 seconds
- Spark: 4.1 seconds

Logistic Regression

- Hadoop: 110 seconds
- Spark: 0.96 seconds

Time per Iteration (s)

Introduction to Spark – Patrick Wendell, Databricks
Resilient Distributed Datasets (RDD)
Resilient Distributed Dataset

- Collections of objects spread across a cluster, stored in RAM or on Disk
- Built through parallel transformations
- Automatically rebuilt on failure
Working in Java

• Tuples

```java
Tuple2 pair = new Tuple2(a, b);
pair._1 // => a
pair._2 // => b
```

• Functions

```java
public class Partitioner extends Function<Tuple2<Integer, Float>, Integer>{
    public Integer call(Tuple2<Integer, Float> t) {
        return r.nextInt(partitions);
    }
}
```
Java Example - MapReduce 😊

`JavaRDD<Integer> dataSet = jsc.parallelize(l, slices);

int count = dataSet.map(new Function<Integer, Integer>() {
 public Integer call(Integer integer) {
 double x = Math.random() * 2 - 1;
 double y = Math.random() * 2 - 1;
 return (x * x + y * y < 1) ? 1 : 0;
 }
}).reduce(new Function2<Integer, Integer, Integer>() {
 public Integer call(Integer integer, Integer integer2) {
 return integer + integer2;
 }
});`
Python example

• Word count in Spark's Python API

```python
file = spark.textFile("hdfs://...")

file.flatMap(lambda line: line.split())
    .map(lambda word: (word, 1))
    .reduceByKey(lambda a, b: a+b)
```
Persisting data

• Spark is Lazy

• To force spark to keep any intermediate data in memory, we can use:
 – `lineLengths.persist(StorageLevel);`
 – which would cause lineLengths RDD to be saved in memory after the first time it is computed.

• Should be used in case we want to process the same RDD multiple times.
Persistance level

- **DISK_ONLY**
- **MEMORY_ONLY**
- **MEMORY_AND_DISK**
- **MEMORY_ONLY_SER**
 - More efficient
 - Use more CPU
- **MEMORY_ONLY_2**
 - Replicate data on 2 executors
RDD operations

• **Actions**
 – Creating RDD
 – Storing RDD
 – Extracting data from RDD on the fly

• **Transformations**
 – Restructure or transform RDD data
Spark Actions
Loading Data

Local data

val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize(data, slices)

External data

JavaRDD<String> input = sc.textFile("file.txt")
sc.textFile("directory/*.txt")
sc.textFile("hdfs://xxx:9000/path/file")
Broadcast

Broadcast<int[]> broadcastVar = sc.broadcast(new int[] {1, 2, 3});

Int[] values = broadcastVar.value();
Storing data

- `counts.saveAsTextFile("hdfs://...")`;
- `counts.saveAsObjectFile("hdfs://...")`;

- `DataCube.saveAsHadoopFile("testfile.seq", LongWritable.class, LongWritable.class, SequenceFileOutputFormat.class);`
Other actions

- **Reduce()** – we already saw in example
- **Collect()** – Retrieve RDD content.
- **Count()** – count number of elements in RDD
- **First()** – Take first element from RDD
- **Take(n)** - Take n first elements from RDD
- **countByKey()** – count values for each unique key
Spark RDD Transformations
Map

JavaPairRDD<String, Integer> ones = words.map(
 new PairFunction<String, String, Integer>() {
 public Tuple2<String, Integer> call(String s) {
 return new Tuple2(s, 1);
 }
 });
groupBy

JavaPairRDD<Integer, List<Tuple3<Integer, Float>>> grouped = values.groupBy(new Partitioner(splits), splits);

public class Partitioner extends Function<Tuple3<Integer, Float>, Integer>{
 public Integer call(Tuple3<Integer, Float> t) {
 return r.nextInt(partitions);
 }
}

Pelle Jakovits
reduceByKey

JavaPairRDD<String, Integer> counts =
ones.reduceByKey(
 new Function2<Integer, Integer, Integer>() {
 public Integer call(Integer i1, Integer i2) {
 return i1 + i2;
 }
 });
JavaRDD<String> logData = sc.textFile(logFile);
long ERRORS = logData.filter(
 new Function<String, Boolean>() {
 public Boolean call(String s) {
 return s.contains("ERROR");
 }
 }
).count();

long INFOS = logData.filter(
 new Function<String, Boolean>() {
 public Boolean call(String s) {
 return s.contains("INFO");
 }
 }
).count();
Other transformations

- **sample**(*withReplacement, fraction, seed*)
- **distinct**([numTasks])
- **union**(*otherDataset*)
- **flatMap**(*func*)
- **join**(*otherDataset, [numTasks]*) - When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key.
- **cogroup**(*otherDataset, [numTasks]*) - When called on datasets of type (K, V) and (K, W), returns a dataset of (K, Seq[V], Seq[W]) tuples.
Fault Tolerance
Lineage

• Lineage is the history of RDD
• RDD’s keep track of all the RDD partitions
 – What functions were applied to produce it
 – Which input data partition were involved
• Rebuild lost RDD partitions according to lineage, using the latest still available partitions.
• No performance cost if nothing fails (as opposite to checkpointing)
Frameworks powered by Spark

- Spark SQL
- Spark Streaming
- MLlib (machine learning)
- GraphX (graph)

Apache Spark
Frameworks powered by Spark

- Spark SQL - Seamlessly mix SQL queries with Spark programs.
 - Similar to Pig and Hive
- MLlib - machine learning library
- GraphX - Spark's API for graphs and graph-parallel computation.
Advantages of Spark

• Not as strict as Hive when it comes to schema
• Much faster than solutions built on top of Hadoop when data can fit into memory
 – Except Impala maybe
• Hard to keep in track of how (well) the data is distributed
Disadvantages of Spark

• If data does not fit into memory..
• Saving as text files is extremely slow
• Not as convinient to use as Pig for prototyping
Conclusion

• RDDs offer a simple and efficient programming model for a broad range of applications
• Achieves fault tolerance by providing coarse-grained operations and tracking lineage
• Provides definite speedup when data fits into the collective memory
That's All

• This week's practice session
 – Processing data with Spark
• Next week's lecture is NoSQL (Jürmo Mehine)
 – Large scale non-relational databases