Basics of Cloud Computing – Lecture 5

MapReduce Algorithms

Pelle Jakovits
Satish Srirama

Some material adapted from slides by Jimmy Lin, Web-Scale Information Processing Applications course, University of Waterloo (licensed under Creation Commons Attribution 3.0 License)
Outline

• Recap of the MapReduce model
• Example MapReduce algorithms
• Designing MapReduce algorithms
 – How to represent everything using only Map, Reduce, Combiner and Partitioner tasks
 – Managing dependencies in data
 – Using complex data types
MapReduce model

• Programmers specify Map and Reduce functions:
 • \(\text{map} \ (k, \ v) \rightarrow (k', \ v') \)\text{*}
 • Applies a user defined function on every input record
 • Values with the same key are grouped together before Reduce phase
 • \(\text{reduce} \ (k', [v']) \rightarrow (k'', \ v'') \)\text{*}
 • Applies a user defined aggregation function on the list of values

• The execution framework handles everything else!

• Users have opportunity to also define:
 – \textbf{Partitioner} - Controls how keys are partitioned between reducers
 • \(\text{partition} \ (k, \ \text{nr. of partitions}) \rightarrow \text{partition_id for } k \)
 – \textbf{Combiner} - Mini-reducer applied at the end of the map phase
 • \(\text{combine} \ (k', [v']) \rightarrow (k'', \ v'') \)\text{*}
Shuffle and Sort: aggregate values by keys

- Map
 - k_1v_1
 - k_2v_2
 - k_3v_3
 - k_4v_4
 - k_5v_5
 - k_6v_6

- Combine
 - (a,1) (b,1) (a,1)
 - (c,1) (b,1) (c,1)
 - (b,1) (c,1)
 - (a,1) (a,1) (c,1)

- Reduce
 - (a, 4)
 - (b, 3)
 - (c, 4)
Typical Hadoop Use Cases

• **Extract, transform and load (ETL) pipelines**
 – Perform transformation, normalization, aggregations on the data
 – Load results into database or data warehouse
 – Ex: Sentiment analysis of review websites and social media data

• **Reporting and analytics**
 – Generate statistics, run ad-hoc queries and information retrieval tasks
 – Ex: Analyzing web clickstream, marketing, CRM, & email data

• **Machine learning**
 – Ex: Building recommender systems for behavioral targeting
 – Ex: Face similarity and recognition over large datasets of images

• **Graph algorithms**
 – Ex: Identifying trends and communities by analyzing social network graph data

Powered By Hadoop - https://wiki.apache.org/hadoop/PoweredBy
MapReduce Jobs

• Tend to be very short, code-wise
 – Identity Reducer is common
• Represent a data flow, rather than a procedure
 – Data “flows“ through Map and Reduce stages
• Can be composed into larger data processing pipelines
• Iterative applications may require repeating the same job multiple times
• Data must be partitioned across many reducers if it is large
• Data will be written into multiple output files if there are more than a single Reduce task
Different MapReduce input formats

- The input types of a MapReduce application are not fixed and depend on the input format that is used.

<table>
<thead>
<tr>
<th>InputFormat</th>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TextInputFormat (Default)</td>
<td>Byte offset of the line (LongWritable)</td>
<td>Line contents Text</td>
</tr>
<tr>
<td>KeyValueInputFormat</td>
<td>User Defined Writable Object e.g. PersonWritable</td>
<td>User Defined Writable Object</td>
</tr>
<tr>
<td>WholeFileInputFormat</td>
<td>NullWritable</td>
<td>File contents (BytesWritable)</td>
</tr>
<tr>
<td>NLineInputFormat</td>
<td>Byte offset of the line block (LongWritable)</td>
<td>Contents of N lines (Text)</td>
</tr>
<tr>
<td>TableInputFormat (HBase)</td>
<td>Row Key</td>
<td>Value</td>
</tr>
</tbody>
</table>
Designing MapReduce algorithms

• General goal of a MapReduce algorithm:
 – How to produce desired **Output** from the **Input data**?
• To define a MapReduce algorithm, we need to define:

1. **Map Function**
 • What is Map **Input** (Key, Value) pair
 • What is Map **Output** (Key, Value) pair
 • Map Function: **Input** (Key, Value) → **Output** (Key, Value)

2. **Reduce Function**
 • What is Reduce **Input** (Key, [Value]) pair
 • What is Reduce **Output** (Key, Value) pair
 • Reduce Function: **Input** (Key, [Value]) → **Output** (Key, Value)

Let's look at a few Example MapReduce algorithms
MapReduce Examples

• Counting URL Access Frequency
• Distributed Grep
• Distributed Sort
• Inverted Index
• Conditional Probabilities
Counting URL Access Frequency

• Process web access logs to count how often each URL was visited
 – **Input**: (LineOffset, Line)
 – **Output**: (URL, count)

• Very similar to the MapReduce WordCount algorithm

• **Map function**
 – Processes one log record at a time
 – Emit (URL, 1) if an URL appears in log record

• **Reduce function**
 – Sum together all values
 – Emit (URL, total_count) pair
Distributed Grep

- Distributed version of the Linux command line Grep command
- Find all rows in a set of text files that contain a supplied regular expression
 - **Input:** (LineOffset, Line)
 - **Output:** (LineOffset, Line)

- **Map function**
 - Emits a line **ONLY** if it matches the supplied regular expression

- **Reduce function**
 - Identity function
 - Emits all input data as (Key, Value) pairs without modifications
MapReduce Algorithm Design Process

1. Structure of the input data ➔ Defines **Job Input (Key, Value)**
2. Desired result ➔ Defines **Job Output (Key'', Value'')**
3. If the desired result can be computed **without shuffling data**:
 – **Map Function**: Job Input (Key, Value) ➔ Job Output (Key'', Value'')
 – **Reduce Function**: Use **Identity** function!
4. If data **needs to be shuffled**:
 – **Map Function**:
 • How should data be grouped ➔ Defines Map Output **Key’**
 • What values are needed in Reduce task ➔ Defines Map Output **Value’**
 • **Function**: Job Input (Key, Value) ➔ Map Output (Key’, Value’)
 – **Reduce Function**:
 • **Input**: Based on Map Output: (Key’, [Value’])
 • **Function**: Reduce Input (Key’, [Value’]) ➔ Job Output (Key’’, Value’’)

20.03.2019
Satish Srirama
Inverted Index Algorithm

• Generate a **Word to File** index for each word in the input dataset
• **Input**: Set of text files
• **Output**: For each word, return a list of files it appeared in

Map Function
- **Input**: (LineOffset, Line)
- **Function**: Extract words from the line of text.
- **Output**: (word, fileName)

Reduce Function
- **Input**: (word, [fileName])
- **Function**: Concatenate list of file names into a single string
- **Output**: (word, “[fileName]“)
Index: Data Flow

Page A
This page contains so much of text

A map output
This: A
page: A
contains: A
so: A
much: A
of: A
text: A

Page B
This page too contains some text

B map output
This: B
page: B
too: B
contains: B
some: B
text: B

Reduced output
This: A, B
page: A, B
too: B
contains: A, B
so: A
much: A
of: A
text: A, B
some: B
Inverted Index MapReduce pseudocode

map(LineOffset, Line, context):
 pageName = context.getInputSplitFileName()
 foreach word in Line:
 emit(word, pageName)

reduce(word, values):
 pageList = []
 foreach pageName in values:
 pageList.add(pageName)
 emit(word, str(set(pageList)))
Distributed Global Sort

• Task is to sort a very large list of numerical values
• Each value is in a separate line inside a text file
• **Input:** A set of text files
• **Output:** values are in a globally sorted order in the output files

• Can be used as a benchmark to measure the raw throughput of the MapReduce cluster
Sort: The Trick

• Take advantage of Reducer properties:
 – (Key, Value) pairs are processed in order by key
 – (Key, Value) pairs from mappers are sent to a particular reducer based on Partition(key) function

• Change the Partition function
 – Must use a partition function such that:

 \[\text{IF } K1 < K2 \text{ THEN } \text{Partition}(K1) \leq \text{Partition}(K2) \]
Distributed Sort algorithm

• **Map Function**
 – **Input:** (LineOffset, Line)
 – **Function:** Move the value into the Key
 – **Output:** (Line, _)

• **Reduce Function**
 – **Input:** (Line, [_])
 – **Function:** Identity Reducer
 – **Output:** (Line, _)
Distributed Sort Data Flow

File A
- 023567
- 911234
- 278689
- 867867
- 232245
- 145663

A map output
- (023567, ")"
- (911234, ")"
- (278689, ")"
- (867867, ")"
- (232245, ")"
- (145663, ")"

Reducer 0 output
- (023567, ")"
- (035567, ")"
- (145663, ")"
- (195677, ")"

Reducer 1 output
- (232245, ")"
- (278689, ")"
- (332432, ")"
- (385566, ")"

Reducer 9 output
- (867867, ")"
- (888888, ")"
- (911234, ")"
- (952442, ")"

File B
- 385566
- 888888
- 952442
- 332432
- 195677
- 035567

B map output
- (385566, ")"
- (888888, ")"
- (952442, ")"
- (332432, ")"
- (195677, ")"
- (035567, ")"
Let's focus on a bit more complex problems
Term co-occurrence matrix

• Term co-occurrence matrix for a text collection
 – M = N x N matrix (N = vocabulary size)
 – M_{ij}: number of times i and j co-occur in some context (let’s say context = sentence)

• Why?
 – Distributional profiles as a way of measuring semantic distance
 – Semantic distance useful for many language processing tasks

 “You shall know a word by the company it keeps” (Firth, 1957)

• How large is the resulting matrix?
• How many elements do we need to count?
Large Counting Problems

• Term co-occurrence matrix for a text collection => specific instance of a large counting problem
 – A large event space (number of terms)
 – A large number of events (the collection itself)
 – Goal: keep track of interesting statistics about the events

• Basic approach
 – Mappers generate partial counts
 – Reducers aggregate partial counts

How do we aggregate partial counts efficiently?
First approach: “Pairs”

• WordCount-like approach
• Each mapper takes a sentence:
 – Generate all co-occurring term pairs
 – For all pairs, emit (a, b) \(\rightarrow\) count
• Reducers sums up counts associated with these pairs
• Use combiners!
“Pairs” Analysis

- **Advantages**
 - Easy to implement
 - Easy to understand

- **Disadvantages**
 - Lots of pairs to sort and shuffle around (upper bound?)
Second approach: “Stripes”

• Idea: group together pairs into an associative array

\[
\begin{align*}
(a, b) & \rightarrow 1 \\
(a, c) & \rightarrow 2 \\
(a, d) & \rightarrow 5 \\
(a, e) & \rightarrow 3 \\
(a, f) & \rightarrow 2
\end{align*}
\]

\[
\begin{array}{l}
\text{a} \rightarrow \{ \text{b: 1, c: 2, d: 5, e: 3, f: 2} \} \\
\text{a} \rightarrow \{ \text{b: 1, c: 2, d: 2, f: 2} \} \\
\text{a} \rightarrow \{ \text{b: 2, c: 2, d: 7, e: 3, f: 2} \}
\end{array}
\]

• Each mapper takes a sentence:
 – Generate all co-occurring term pairs
 – For each term, emit \(a \rightarrow \{ \text{b: count}_b, \text{c: count}_c, \text{d: count}_d \ldots \} \)

•Reducers perform element-wise sum of associative arrays

\[
\begin{align*}
\text{a} & \rightarrow \{ \text{b: 1}, \text{d: 5}, \text{e: 3} \} \\
+ \text{a} & \rightarrow \{ \text{b: 1, c: 2, d: 2}, \text{f: 2} \} \\
\text{a} & \rightarrow \{ \text{b: 2, c: 2, d: 7, e: 3, f: 2} \}
\end{align*}
\]
“Stripes” Analysis

• Advantages
 – Far less sorting and shuffling of key-value pairs
 – Can make better use of combiners

• Disadvantages
 – More difficult to implement
 – Underlying object is more heavyweight
 – Fundamental limitation in terms of size of event space
Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)
Managing Dependencies in Data

• Remember, Mappers run in isolation. We can't control:
 – The order in which mappers run
 – On which nodes the mappers run
 – When each mapper finishes

• Available tools for synchronization:
 – Ability to hold state in reducer across multiple key-value pairs
 – Sorting function for keys
 – Partitioners
 – Broadcasting/replicating values
 – Cleverly-constructed data structures
Conditional Probabilities

• What is the chance of word B occurring in a sentence that contains word A.

• How do we compute conditional probabilities from counts?

\[P(B|A) = \frac{\text{count}(A, B)}{\text{count}(A)} = \frac{\text{count}(A, B)}{\sum_{B'} \text{count}(A, B')} \]

• How do we compute this with MapReduce?
P(B | A): “Pairs”

- Co-occurrence matrix already gives us: count(A, B)
- Need to also compute count(A)

(a, *)	23
(a, b₁)	3
(a, b₂)	12
(a, b₃)	7
(a, b₄)	1

Reducer holds this value in memory

(a, *)	23
(a, b₁)	3 / 23
(a, b₂)	12 / 23
(a, b₃)	7 / 23
(a, b₄)	1 / 23

- How can we compute count(a) without changing how the data is grouped?
 - Must also emit an extra (a, *) for every b_n in mapper
 - Must make sure all a’s get sent to same reducer (use Partitioner)
 - Must make sure (a, *) comes first (define sort order)
P(B|A): “Stripes”

\[a \rightarrow \{ b_1 : 3, b_2 : 12, b_3 : 7, b_4 : 1, \ldots \} \]

- Easy!
 - One pass to compute \((a, *)\)
 - Another pass to directly compute \(P(B|A)\)
Synchronization in Hadoop

- **Approach 1:** turn synchronization into an ordering problem
 - Partition key space so that each reducer gets the appropriate set of partial results
 - Sort keys into correct order of computation
 - Hold state in reducer across multiple key-value pairs to perform computation
 - Illustrated by the “pairs” approach

- **Approach 2:** construct data structures that “bring the pieces together”
 - Each reducer receives all the data it needs to complete the computation
 - Illustrated by the “stripes” approach
Issues and Tradeoffs

• Number of key-value pairs
 – Object creation overhead
 – Time for sorting and shuffling pairs across the network

• Size of each key-value pair
 – De/serialization overhead

• Combiners make a big difference!
 – RAM vs. disk and network
 – Arrange data to maximize opportunities to aggregate partial results
Complex Data Types in Hadoop

• How to use more complex data types as Keys and Values?
• The easiest way:
 – Encode it as a composed String, e.g., (a, b) = “a;b”
 – Use regular expressions to parse and extract data
 – Works, but pretty hack-ish
• The hard way:
 – Define a custom implementation of WritableComparable
 – Must implement: readFields, write, compareTo
 – Computationally more efficient, but slow for rapid prototyping
public class MyKey implements WritableComparable {
 private int ID;
 private long phone_num;

 public void write(DataOutput out) {
 out.writeInt(ID);
 out.writeLong(phone_num);
 }

 public void readFields(DataInput in) {
 ID = in.readInt();
 phone_num = in.readLong();
 }

 public int compareTo(MyKey o) {
 int res = Integer.compare(this.ID, o.ID);
 if (res != 0)
 return res;
 return Long.compare(this.phone_num, o.phone_num);
 }
}

Custom Hadoop WritableComparable Object
Next Lab

• Creating a new MapReduce application
 – Analyzing an open dataset
 – Parsing CSV files
 – Aggregating data using simple statistical functions
Next Lecture

- Platform as a Service (PaaS) model
 - Google AppEngine
 - Elastic MapReduce (EMR)
 - MapReduce platform as a Service
References

- Jimmy Lin and Chris Dyer, "Data-Intensive Text Processing with MapReduce"
 Pages 50-57: Pairs and Stripes problem