Platform as a Service (PaaS)
Google App Engine

Pelle Jakovits
15 March, 2016, Tartu
Outline

• Introduction to PaaS
• Google Cloud
• **Google AppEngine**
• Other PaaS providers
• Advantages & Disadvantages of PaaS
Cloud Services

SaaS

PaaS

IaaS

Value Visibility to End Users

End Users

Application Developers

Network Architects
Platform as a Service - PaaS

• Complete platform for hosting applications in Cloud
• All the infrastructure is managed for you
• Enables businesses to build and run web-based, custom applications in an on-demand fashion
• Eliminates the complexity of selecting, purchasing, configuring, and managing hardware and software
• Dramatically decreases upfront costs
PaaS Characteristics

• Multi-tenant architecture
• Built-in scalability of deployed software
• Integrated with web services and databases
• Users are provided with tools to simplify creating and deploying applications
• Simplifies prototyping and deploying startup solutions
PaaS Characteristics

• Users only pay for services they use
• More fine grained cost model
• Provides tools to handle billing and subscription management
• Typically introduces vendor lock-in
Types of PaaS

• **Stand Alone Application Platforms**
 – Typically built on top of an existing IaaS
 – Provides development tools for designing and deploying software
 – Provide all required computing resources and services needed for hosted applications

• **Social Application Development Platforms**
 – Used to develop addons and internal applications for social websites like Google+ and Facebook.
 – Integrated API with the social website platform
 – Can be seen as extending SaaS platform

• **Open-Computing Platforms**
 – Not tied to a single IaaS provider
 – Goal is interoperability and supporting open-source platform tools.
 – Supports applications that are written in numerous languages and that use any type of database, operating system, and server
Google Cloud

• IaaS & PaaS services
• All services built on top of Google hardware located across the globe
 • Global redundancy and service locality
• Utilizes Google’s Global network
 – Dedicated fiber optic networks
 – Even between continents
 – Multilevel location based data caching
• Google Managed Services
 – Database administration, server configuration, sharding and load balancing managed for the user
Google Cloud Services

• **Compute Engine** - IaaS
• **App Engine** – PaaS
• **Container Engine**
• **Storage**
 – **Cloud SQL** – Fully managed Relational MySQL
 – **Cloud Storage** – Object storage for applications
 – **Cloud Datastore** – Automatically scaled NoSQL storage
 – **Cloud BigTable** – NoSQL database for warehousing
• Google Cloud Services

• Big Data
 – Big Query – SQL like queries against multi-terabyte datasets
 – Cloud Dataflow – Managing data processing workflows
 – Cloud DataProc – Data Processing with Hadoop and Spark

• Cloud Endpoints
 – Create RESTful services to make your code accessible from iOS, Android and Javascript clients.
Free Cloud Account

- Apply at https://cloud.google.com/free-trial/
- $300 Credit for 60 days.
- Maximum limit of 8 cores at a time for instances.
- Need credit card to sign up
- Won't be billed until upgrade to paid account
- Only the portion of usage above the App Engine free daily quota is charged against credit.
- Most services available.
Google App Engine
Google AppEngine

• Easy to build, maintain, and scale applications
• No servers to maintain of configure by yourself
• Upload & Go
• Was created before Google Cloud became available for public use
• Supported languages
 – Python, Java, PHP, Go
App Engine Characteristics

- **Persistent storage** with queries, sorting, and transactions
- App Engine distributes user requests across multiple servers and **scales servers** to meet **dynamic traffic** demands.
- **Asynchronous task queues** for performing work outside the scope of a request
- **Scheduled tasks** for triggering events at specified times or regular intervals
- **Integration** with all other Google Cloud services and APIs
- Your application runs within its own **secure, sandboxed and reliable** environment that is independent of the hardware, operating system, or physical location of the server.
Use Cases

• **Rovio**
 – Transition “Angry Birds” games to an online environment
 – Use a platform that could support explosive demand
 – Easily add new features to improve the user experience

• **Ubisoft**
 – Develop a web-based version of a console game “From Dust”
 – Find an easy-to-use system so developers focus on the user experience
 – Scale effortlessly to accommodate a fast-growing number of players

• **Best Buy**
 – Quickly develop and deploy apps to achieve its business goals
 – Create apps that are scalable and low-maintenance
 – Dramatic time and cost savings in app development, which has led to the creation of many more apps
Datastores

- **Google Cloud SQL** - A fully-managed web service that allows you to create, configure, and use relational databases in Google's cloud.

- **Datastore** - A schemaless object datastore providing robust, scalable storage for your web application, a rich data modeling API, and a SQL-like query language called GQL.

- **Blobstore** - Allows your application to serve large data objects, such as video or image files, that are too large for storage in the Datastore service.
Other data services

• **Search** - Allows your application to perform Google-like searches over structured data such as: plain text, HTML, atom, numbers, dates, and geographic locations.

• **Memcache** - A distributed, in-memory data cache to improve application performance.

• **Logs** - Provides programmatic access to application and request logs from within your application.
Communication

• **Channel** - Creates a persistent connection between your application in Google servers and JavaScript clients so you can send messages to clients in real time without "polling".

• **Mail** - Sends email messages on behalf of administrators and users with Google Accounts, and receives mail at various addresses.

• **XMPP** - Enables an application to send and receive chat messages to and from any XMPP-compatible chat messaging service.

• **Traffic Splitting** - Allows you to roll out features for your app slowly over a period of time. Traffic Splitting works by splitting incoming requests to different versions of your app.
Process management

• Task Queue - Allows applications to perform work outside of a user request, and organize that work into small, discrete units, called "tasks," to be executed later.

• Scheduled Tasks - Allows applications to configure regularly scheduled tasks that operate at defined times or regular intervals.

• Remote - Lets external applications transparently access App Engine services. For example, you can use Remote API to access a production datastore from an app running on your local machine.
Other services

- **App Identity** - Gives code access to the application identity; provides framework to assert this identity over OAuth.

- **Users** - Allows applications to sign in users with Google Accounts or OpenID, and address these users with unique identifiers.

- **Capabilities** - Provides detection of outages and scheduled maintenance for specific APIs and services, so that your application may bypass them or inform your users.

- **Multitenancy** - Makes it easy to compartmentalize your data to serve many client organizations from a single instance of your application.

- **PageSpeed** - A family of tools that automatically optimizes the performance of your application.
AppEngine for Mobiles

• Define business logic on App Engine and access them via RESTful APIs on multiple platforms including Android, IOS and JavaScript.
• Deploy an app in 300 seconds
• Automatically generate strongly-typed client libraries for iOS, Android, and JavaScript.
• Geo-proximity search
• Push Notifications to iOS and Android
• Simple access to data storage and processing
AppEngine for Mobiles
Mobile Gaming on the Google Cloud Platform – Solution Reference Architecture Diagram
IaaS Pricing Model

• Per instance hour
• Per storage amount/month
• Per Network bandwith/month
• Per additional services
 – Static IP
 – Autoscaling/load balancing
PaaS Pricing Model

<table>
<thead>
<tr>
<th>Service</th>
<th>Free Limit (Per Day)</th>
<th>Above Free Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instances</td>
<td>28 instance hours</td>
<td>$0.05 / instance / hour</td>
</tr>
<tr>
<td>Cloud Datastore (NoSQL)</td>
<td>• 50k read/write/small</td>
<td>• $0.06 / 100k read or write ops</td>
</tr>
<tr>
<td></td>
<td>• 1 GB storage</td>
<td>• Small operations free*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• $0.18 / GB / month</td>
</tr>
<tr>
<td>Network Traffic (Outgoing)</td>
<td>1 GB</td>
<td>$0.12 / GB</td>
</tr>
<tr>
<td>Network Traffic (Incoming)</td>
<td>1 GB</td>
<td>FREE</td>
</tr>
<tr>
<td>Cloud Storage</td>
<td>5 GB</td>
<td>$0.026 / GB / month</td>
</tr>
<tr>
<td>Memcache</td>
<td>• Free Usage of Shared Pool</td>
<td>• Free Usage of Shared Pool</td>
</tr>
<tr>
<td></td>
<td>• No free quota for Dedicated Pool</td>
<td>• Dedicated Pool: $0.06 / GB / hour</td>
</tr>
</tbody>
</table>
PaaS Pricing Model

<table>
<thead>
<tr>
<th>Service</th>
<th>FREE PER DAY</th>
<th>PRICE ABOVE FREE LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>1000 basic operations</td>
<td>0.50 / 10k searches</td>
</tr>
<tr>
<td></td>
<td>0.01 GB indexing documents</td>
<td>2.00 / GB indexing documents</td>
</tr>
<tr>
<td></td>
<td>0.25 GB document storage</td>
<td>0.18 / GB / month Storage</td>
</tr>
<tr>
<td></td>
<td>100 searches</td>
<td></td>
</tr>
<tr>
<td>Email API</td>
<td>100 recipients</td>
<td>Contact Sales</td>
</tr>
<tr>
<td>Logs API</td>
<td>100 MB</td>
<td>$0.12 per GB</td>
</tr>
<tr>
<td>Task Queue</td>
<td>5 GB</td>
<td>$0.026 / GB / month</td>
</tr>
<tr>
<td>Logs Storage</td>
<td>1 GB</td>
<td>$0.026 / GB / month</td>
</tr>
<tr>
<td>SSL Virtual IPs</td>
<td>-</td>
<td>$39 / virtual IP / month</td>
</tr>
<tr>
<td>Bundled Services</td>
<td>Cron, Image Manipulation, SNI SSL Certificates,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Socket API, Task Queue API, URLFetch, Users API</td>
<td></td>
</tr>
</tbody>
</table>
Windows Azure

• Hybrid PaaS & IaaS cloud platform
• Designed more for enterprise applications
• Programming languages
 – .NET, Java, PHP, Node.js, Python, or Ruby
• Datastores
 – Azure SQL database and NoSQL storage
• Mobiles
 – Native SDK’s for Windows, iOS, Android and HTML5
 – Notification hubs for push notifications (Windows, iOS, Android)
Windows Azure

• BigCompute
 – HPC on demand
 – MPI applications with Remote Direct Memory Access (RDMA)
• HDInsight
 – Setting up dynamic Hadoop clusters for Data Analysis
• Examples of applications running in Azure:
 – Office 365, Skype, Bing, and Xbox
 – WebZen, Toyota Gazoo.com, HALO
AWS Elastic Beanstalk

- Languages: Java, .NET, PHP, Node.js, Python, Ruby, Go
- Platforms: Docker, Apache, Nginx, Passenger, and IIS.
- Automatically handles deployment, capacity provisioning, load balancing, auto-scaling, application health monitoring.
- More manual control available (and required)
Other PaaS Examples

• **AppScale**
 – Open-Source framework
 – Supports Google App Engine Applications.
 – Supports MySQL Clusters, HBase, Hypertable, and Apache Cassandra
 – Python, Go, and Java applications.

• **Cloud Foundry**
 – Cloud Foundry is an open-source PaaS platform that supports programming languages Java and Scala.

• **AppFog**
 – Supports Java, Node, .Net, Ruby, PHP, MySQL, Mongo, PostgreSQL
 – Choose your own Cloud Provider.

• **Heroku**
 – Was one of the first PaaS services offered on the market
 – Supports Ruby, Java, Scala, and Python applications
PaaS Advantages

- User does not have to manage low level computing resources and services
- Many services ready to use in a plug-in fashion without any configuration or setup
- **Provider handles most of the non functional requirements of your applications**
- **Scaling is automatically managed** by the platform
- Easier and Agile application deployment
 - Simplifies prototyping and application startups
- **Lower costs**
 - Pay for only what is used
 - More fine-grained cost model than in IaaS
- Platform provider has the best knowledge to optimize the services running on the underlying hardware
PaaS Disadvantages

- **Not in full control** over:
 - Computing resources (Intel vs AMD, GPU’s, FPGA, ...)
 - Software and library versions
 - Service configuration
- Available programming languages are often limited
- **Vendor lock-in**
- Offered services may not be flexible enough for user needs
- Have to **fully trust** in the PaaS provider
 - Billing accuracy
 - Security
 - Reliability
 - Data ownership
- What happens when application exceeds billing quotas? What happens when payments fail?
That's All

• This week's practice session is:
 – Creating and deploying Google AppEngine applications using python

• Next lecture: Other Cloud Services