Basics of Cloud Computing – Lecture 5

MapReduce Algorithms

Satish Srirama

Some material adapted from slides by Jimmy Lin, 2008 (licensed under Creation Commons Attribution 3.0 License)
Outline

• MapReduce algorithms
• How to write MR algorithms
Shuffle and Sort: aggregate values by keys

map

k_1 v_1
k_2 v_2
k_3 v_3
k_4 v_4
k_5 v_5
k_6 v_6

combine

partition

map

map

map

combine

combine

combine

partition

partition

partition

Shuffle and Sort: aggregate values by keys

reduce

reduce

reduce

r_1 s_1
r_2 s_2
r_3 s_3

8.03.2016 Satish Srirama
Hadoop Usage Patterns

• Extract, transform, and load (ETL)
 – Perform aggregations, transformation, normalizations on the data (e.g. Log files) and load into RDBMS/ data mart

• Reporting and analytics
 – Run ad-hoc queries, analytics and data mining operations on large data

• Data processing pipelines

• Machine learning & Graph algorithms
 – Implement machine learning algorithms on huge data sets
 – Traverse large graphs and data sets, building models and classifiers
MapReduce Examples

- Distributed Grep
- Count of URL Access Frequency
- Reverse Web-Link Graph
- Term-Vector per Host
- Inverted Index
- Distributed Sort
MapReduce Jobs

• Tend to be very short, code-wise
 – IdentityReducer is very common
• “Utility” jobs can be composed
• Represent a data flow, more so than a procedure
Count of URL Access Frequency

- Processing web access logs
- Very similar to word count
- Map
 - processes logs of web page requests and outputs
 <URL, 1>
- Reduce
 - adds together all values
 - emits a <URL, total count> pairs
Distributed Grep

- **Map**
 - Emits a line if it matches a supplied pattern

- **Reduce**
 - Identity function
 - Just copies the supplied intermediate data to the output
Reverse Web-Link Graph

- **Map**
 - Outputs \(<target, source>\) pairs
 - for each link to a target URL found in a page named \(source\).

- **Reduce**
 - Concatenates the list of all source URLs
 - Returns \(<target, list(source)>\)
Sort: Inputs

- A set of files, one value per line.
- Mapper key is file name, line number
- Mapper value is the contents of the line
Sort Algorithm

• Takes advantage of reducer properties:
 – (key, value) pairs are processed in order by key; reducers are themselves ordered
• Mapper: Identity function for value
 (k, v) -> (v, _)
• Reducer: Identity function (k’, _) -> (k’, “”)

Sort: The Trick

• (key, value) pairs from mappers are sent to a particular reducer based on hash(key)
• Must pick the hash function for your data such that
 – K1 < K2 => hash(K1) < hash(K2)
• Used as a test of Hadoop’s raw speed
Inverted Index: Inputs

- A set of files containing lines of text
- Mapper key is file name, line number
- Mapper value is the contents of the line
Inverted Index Algorithm

• Mapper: For each word in (file, words), map to (word, file)

• Reducer: Identity function
Index MapReduce

• map(pageName, pageText):
 foreach word w in pageText:
 emit Intermediate(w, pageName);
 Done

• reduce(word, values):
 foreach pageName in values:
 AddToOutputList(pageName);
 Done
 emitFinal(FormattedPageListForWord);
Index: Data Flow

This page contains so much of text

This page too contains some text

A map output
This : A
page : A
contains : A
so : A
much : A
of : A
text : A

B map output
This : B
page : B
too : B
contains : B
some : B
text : B

Reduced output
This : A, B
page : A, B
too : B
contains : A, B
so : A
much : A
of : A
text : A, B
some : B
Let us focus much bigger problems
Managing Dependencies

• Remember: Mappers run in isolation
 – You have no idea in what order the mappers run
 – You have no idea on what node the mappers run
 – You have no idea when each mapper finishes

• Tools for synchronization:
 – Ability to hold state in reducer across multiple key-value pairs
 – Sorting function for keys
 – Partitioner
 – Cleverly-constructed data structures
Motivating Example

• Term co-occurrence matrix for a text collection
 – $M = N \times N$ matrix ($N =$ vocabulary size)
 – M_{ij}: number of times i and j co-occur in some context
 (for concreteness, let’s say context = sentence)

• Why?
 – Distributional profiles as a way of measuring semantic distance
 – Semantic distance useful for many language processing tasks

“You shall know a word by the company it keeps” (Firth, 1957)

e.g., Mohammad and Hirst (EMNLP, 2006)
MapReduce: Large Counting Problems

- Term co-occurrence matrix for a text collection = specific instance of a large counting problem
 - A large event space (number of terms)
 - A large number of events (the collection itself)
 - Goal: keep track of interesting statistics about the events

- Basic approach
 - Mappers generate partial counts
 - Reducers aggregate partial counts

How do we aggregate partial counts efficiently?
First Try: “Pairs”

• Each mapper takes a sentence:
 – Generate all co-occurring term pairs
 – For all pairs, emit \((a, b) \rightarrow \text{count}\)
• Reducers sums up counts associated with these pairs
• Use combiners!
“Pairs” Analysis

• Advantages
 – Easy to implement, easy to understand

• Disadvantages
 – Lots of pairs to sort and shuffle around (upper bound?)
Another Try: “Stripes”

- Idea: group together pairs into an associative array

 \[
 (a, b) \rightarrow 1 \quad a \rightarrow \{ b: 1, c: 2, d: 5, e: 3, f: 2 \}
 \]

 \[
 (a, c) \rightarrow 2
 \]

 \[
 (a, d) \rightarrow 5
 \]

 \[
 (a, e) \rightarrow 3
 \]

 \[
 (a, f) \rightarrow 2
 \]

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For each term, emit \(a \rightarrow \{ b: \text{count}_b, c: \text{count}_c, d: \text{count}_d \ldots \} \)

- Reducers perform element-wise sum of associative arrays

\[
\begin{align*}
 a & \rightarrow \{ b: 1, d: 5, e: 3 \} \\
 + & \quad a \rightarrow \{ b: 1, c: 2, d: 2, f: 2 \} \\
 & \quad a \rightarrow \{ b: 2, c: 2, d: 7, e: 3, f: 2 \}
\end{align*}
\]
“Stripes” Analysis

• Advantages
 – Far less sorting and shuffling of key-value pairs
 – Can make better use of combiners

• Disadvantages
 – More difficult to implement
 – Underlying object is more heavyweight
 – Fundamental limitation in terms of size of event space
Efficiency comparison of approaches to computing word co-occurrence matrices

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)
Conditional Probabilities

• How do we compute conditional probabilities from counts?

\[P(B \mid A) = \frac{\text{count}(A, B)}{\text{count}(A)} = \frac{\text{count}(A, B)}{\sum_{B'} \text{count}(A, B')} \]

• How do we do this with MapReduce?
P(B | A): “Pairs”

Reducer holds this value in memory

(a, *) → 32

(a, b₁) → 3
(a, b₂) → 12
(a, b₃) → 7
(a, b₄) → 1
...

(a, b₁) → 3 / 32
(a, b₂) → 12 / 32
(a, b₃) → 7 / 32
(a, b₄) → 1 / 32
...

- For this to work:
 - Must emit extra (a, *) for every bₙ in mapper
 - Must make sure all a’s get sent to same reducer (use Partitioner)
 - Must make sure (a, *) comes first (define sort order)
P(B|A): “Stripes”

\[a \rightarrow \{ b_1 : 3, b_2 : 12, b_3 : 7, b_4 : 1, \ldots \} \]

- Easy!
 - One pass to compute \((a, *)\)
 - Another pass to directly compute \(P(B|A)\)
Synchronization in Hadoop

• Approach 1: turn synchronization into an ordering problem
 – Sort keys into correct order of computation
 – Partition key space so that each reducer gets the appropriate set of partial results
 – Hold state in reducer across multiple key-value pairs to perform computation
 – Illustrated by the “pairs” approach

• Approach 2: construct data structures that “bring the pieces together”
 – Each reducer receives all the data it needs to complete the computation
 – Illustrated by the “stripes” approach
Issues and Tradeoffs

• Number of key-value pairs
 – Object creation overhead
 – Time for sorting and shuffling pairs across the network

• Size of each key-value pair
 – De/serialization overhead

• Combiners make a big difference!
 – RAM vs. disk and network
 – Arrange data to maximize opportunities to aggregate partial results
Complex Data Types in Hadoop

• How do you implement complex data types?
• The easiest way:
 – Encoded it as Text, e.g., (a, b) = “a:b”
 – Use regular expressions to parse and extract data
 – Works, but pretty hack-ish
• The hard way:
 – Define a custom implementation of WritableComparable
 – Must implement: readFields, write, compareTo
 – Computationally efficient, but slow for rapid prototyping
Lab related to the lecture

- MapReduce for data analysis
- Writing better MapReduce algorithms
Next Lecture

• Platform as a Service
 – Google AppEngine
References

• Data-Intensive Text Processing with MapReduce
Authors: Jimmy Lin and Chris Dyer

Pages 50-57: Pairs and Stripes problem