Parallel Computing
MapReduce
Framework and algorithms

Pelle Jakovits
Outline

• MapReduce framework
• Example MapReduce algorithms
• Designing MapReduce algorithms
 – How to represent everything using only Map, Reduce, Combiner and Partitioner tasks
 – Managing dependencies in data
 – Using complex data types
MapReduce model

• Programmers specify Map and Reduce functions:
 • $\text{map} \ (k, \ v) \rightarrow (k’, \ v’)*$
 • Applies a user defined function on every input record
 • Values with the same key are grouped together before Reduce phase
 • $\text{reduce} \ (k’, \ [v’]) \rightarrow (k’’, \ v’’)*$
 • Applies a user defined aggregation function on the list of values

• The execution framework handles everything else!
• Users have opportunity to also define:
 – **Partitioner** - Controls how keys are partitioned between reducers
 • $\text{partition} \ (k, \ \text{nr. of partitions}) \rightarrow \text{partition_id\ for\ } k$
 – **Combiner** - Mini-reducer applied at the end of the map phase
 • $\text{combine} \ (k’, \ [v’]) \rightarrow (k’’, \ v’’)*$
Shuffle and Sort: aggregate values by keys

(a, 1) (b, 1) (a, 1)
(c, 1) (b, 1) (c, 1)
(b, 1) (c, 1)
(a, 1) (a, 1) (c, 1)

combine

(a, 2) (b, 1)
(c, 2) (b, 1)
(b, 1) (c, 1)
(a, 2) (c, 1)

combine

Shuffle and Sort: aggregate values by keys

(a, [2, 2])
(b, [1, 1, 1])
(c, [2, 1, 1])

reduce

(a, 4)
(b, 3)
(c, 4)
Typical Hadoop Use Cases

• **Extract, transform and load** (ETL) pipelines
 – Perform transformation, normalization, aggregations on the data
 – Load results into database or data warehouse
 – Ex: Sentiment analysis of review websites and social media data

• **Reporting and analytics**
 – Generate statistics, run ad-hoc queries and information retrieval tasks
 – Ex: Analysing web clickstream, marketing, CRM, & email data

• **Machine learning**
 – Ex: Building recommender systems for behavioural targeting
 – Ex: Face similarity and recognition over large datasets of images

• **Graph algorithms**
 – Ex: Identifying trends and communities by analysing social network graph data

Powered By Hadoop

https://cwiki.apache.org/confluence/display/HADOOP2/PoweredBy
From MapReduce to MPI

• **Map**: Perform some local computation on “local” data

• **Map key**: define which “process” receives map output

• **Shuffle between Map & Reduce**: Scatter data

• **Reduce function**:
 – Apply user defined aggregation function on a partition
 – Write out to distributed file system (no central gather)
Hadoop execution flow

• Create or allocate a cluster
• Upload data into the distributed file system
 – Data is split into blocks and replicated
• Run your job. The framework will:
 – Copy Mapper code to the allocated nodes
 • Move computation to data, not data to computation
 – Run Mapper tasks
 – Map output will be sorted and partitioned by key
 – Run Reducer tasks (Each handles a number of partitions)
• Results are stored in the HDFS
Hadoop Processing Model

Adapted from (Dean and Ghemawat, OSDI 2004)
MapReduce Jobs

- Tend to be very short, code-wise
 - Identity Reducer is common
- Represent a data flow, rather than a procedure
 - Data ‘flows’ through Map and Reduce stages
- Can be composed into larger data processing pipelines
- Iterative applications may require repeating the same job multiple times
- Data must be partitioned across many reducers if it is large
- Data will be written into multiple output files if there are more than a single Reduce task
Hadoop MapReduce Architecture: High Level

Master node

namenode
namenode daemon

job submission node
jobtracker

MapReduce job submitted by client computer

Slave node

Task instance

datanode daemon
Linux file system

...
Limitations with MapReduce V1

• Master node has too many responsibilities!
• This leads to scalability issues
 – Maximum Cluster Size – 4000 Nodes
 – Maximum Concurrent Tasks – 40000
• Coarse synchronization in Job Tracker
 – Single point of failure
 – Failure kills all queued and running jobs
• Jobs need to be resubmitted by users
 – Restart is very tricky due to complex state
• Problems with resource utilization
MapReduce NextGen aka YARN aka MRv2

• New architecture introduced in hadoop-0.23
• Divides two major functions of the JobTracker into separate components
 – Resource management
 – Job life-cycle management are divided
• An application is either a single job in the sense of classic MapReduce jobs or a Directed Acyclic Graph (DAG) of such jobs
YARN Architecture

- **ResourceManager:**
 - Arbitrates resources among all the applications in the system
 - Has two main components: Scheduler and ApplicationsManager

- **NodeManager:**
 - Per-machine worker
 - Responsible for launching the applications’ containers, monitoring their resource usage

- **ApplicationMaster:**
 - Negotiate appropriate resource containers from the Scheduler, tracking their status and monitoring for progress

- **Container:**
 - Unit of allocation incorporating resource elements such as memory, cpu, disk, network etc.
 - To execute a specific task of the application
Parallel Computing frameworks on Hadoop YARN

- **MPICH-yarn** - Running MPI in a Hadoop cluster
- **MPI-YARN** - A robust and lightweight application to launch MPI on YARN cluster
- **NEWT** - A resilient BSP framework for Iterative algorithms on Hadoop YARN
Different MapReduce input formats

- The input types of a MapReduce application are not fixed and depend on the input format that is used.

<table>
<thead>
<tr>
<th>InputFormat</th>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TextInputFormat (Default)</td>
<td>Byte offset of the line (LongWritable)</td>
<td>Line contents Text</td>
</tr>
<tr>
<td>KeyValueInputFormat</td>
<td>User Defined Writable Object e.g. PersonWritable</td>
<td>User Defined Writable Object</td>
</tr>
<tr>
<td>WholeFileInputFormat</td>
<td>NullWritable</td>
<td>File contents (BytesWritable)</td>
</tr>
<tr>
<td>NLineInputFormat</td>
<td>Byte offset of the line block (LongWritable)</td>
<td>Contents of N lines (Text)</td>
</tr>
<tr>
<td>TableInputFormat (HBase)</td>
<td>Row Key</td>
<td>Value</td>
</tr>
</tbody>
</table>
Designing MapReduce algorithms

• General goal of a MapReduce algorithm:
 – How to produce desired **Output** from the **Input data**?
• To define a MapReduce algorithm, we need to define:
 1. **Map Function**
 • What is **Map Input** (Key, Value) pair
 • What is **Map Output** (Key, Value) pair
 • **Map Function**: Input (Key, Value) → Output (Key, Value)
 2. **Reduce Function**
 • What is Reduce **Input** (Key, [Value]) pair
 • What is Reduce **Output** (Key, Value) pair
 • **Reduce Function**: Input (Key, [Value]) → Output (Key, Value)

Let's look at a few Example MapReduce algorithms
MapReduce Examples

- Counting URL Access Frequency
- Distributed Grep
- Distributed Sort
- Inverted Index
- Conditional Probabilities
Counting URL Access Frequency

• Process web access logs to count how often each URL was visited
 – **Input:** (LineOffset, Line)
 – **Output:** (URL, count)

• Very similar to the MapReduce WordCount algorithm

• **Map function**
 – Processes one log record at a time
 – Emit (URL, 1) if an URL appears in log record

• **Reduce function**
 – Sum together all values
 – Emit (URL, total_count) pair
Distributed Grep

• Distributed version of the Linux command line Grep command
• Find all rows in a set of text files that contain a supplied regular expression
 – **Input:** (LineOffset, Line)
 – **Output:** (LineOffset, Line)

• **Map function**
 – Emits a line **ONLY** if it matches the supplied regular expression

• **Reduce function**
 – Identity function
 – Emits all input data as (Key, Value) pairs without modifications
MapReduce Algorithm Design Process

1. Structure of the input data → Defines **Job Input (Key, Value)**
2. Desired result → Defines **Job Output (Key”, Value”)**
3. If the desired result can be computed **without shuffling data**:
 - **Map Function**: Job Input (Key, Value) → Job Output (Key”, Value”)
 - **Reduce Function**: Use **Identity** function!
4. If data **needs to be shuffled**:
 - **Map Function**:
 - How should data be grouped → Defines Map Output **Key’**
 - What values are needed in Reduce task → Defines Map Output **Value’**
 - **Function**: Job Input (Key, Value) → Map Output (Key’, Value’)
 - **Reduce Function**:
 - **Input**: Based on Map Output: (Key’, [Value’])
 - **Function**: Reduce Input (Key’, [Value’]) → Job Output (Key”, Value”)
Inverted Index Algorithm

• Generate a **Word to File** index for each word in the input dataset

• **Input:** Set of text files

• **Output:** For each word, return a list of files it appeared in

• **Map Function**
 – **Input:** (LineOffset, Line)
 – **Function:** Extract words from the line of text.
 – **Output:** (word, fileName)

• **Reduce Function**
 – **Input:** (word, [fileName])
 – **Function:** Concatenate list of file names into a single string
 – **Output:** (word, “[fileName]”)
Index: Data Flow

Page A

This page contains so much of text

A map output

This : A
page : A
contains : A
so : A
much : A
of : A
text : A

Page B

This page too contains some text

B map output

This : B
page : B
too : B
contains : B
some : B
text : B

Reduced output

This : A, B
page : A, B
too : B
contains : A, B
so : A
much : A
of : A
text : A, B
some : B
Inverted Index MapReduce pseudocode

map(LineOffset, Line, context):
 pageName = context.getInputSplitFileName()
 foreach word in Line:
 emit(word, pageName)

reduce(word, values):
 pageList = []
 foreach pageName in values:
 pageList.add(pageName)
 emit(word, str(set(pageList)))
Distributed Global Sort

• Task is to sort a very large list of numerical values
• Each value is in a separate line inside a text file
• **Input:** A set of text files
• **Output:** values are in a globally sorted order in the output files

• Can be used as a benchmark to measure the raw throughput of the MapReduce cluster
Sort: The Trick

• Take advantage of Reducer properties:
 – (Key, Value) pairs are processed in order by key
 – (Key, Value) pairs from mappers are sent to a particular reducer based on Partition(key) function

• Change the Partition function
 – Must use a partition function such that:

\[
\text{IF } K1 < K2 \text{ THEN } \text{Partition}(K1) \leq \text{Partition}(K2)
\]
Distributed Sort algorithm

• **Map Function**
 – **Input:** (LineOffset, Line)
 – **Function:** Move the value into the Key
 – **Output:** (Line, _)

• **Reduce Function**
 – **Input:** (Line, [_])
 – **Function:** Identity Reducer
 – **Output:** (Line, _)

Pelle Jakovits
Distributed Sort Data Flow

File A
- 023567
- 911234
- 278689
- 867867
- 232245
- 145663

A map output
- (023567, "")
- (911234, "")
- (278689, "")
- (867867, "")
- (232245, "")
- (145663, ")"

File B
- 385566
- 888888
- 952442
- 332432
- 195677
- 035567

B map output
- (385566, "")
- (888888, "")
- (952442, "")
- (332432, "")
- (195677, "")
- (035567, "")

Reduction 0 output
- (023567, "")
- (035567, "")
- (145663, "")
- (195677, "")

Reduction 1 output
- (232245, "")
- (278689, "")
- (332432, "")
- (385566, "")

Reduction 9 output
- (867867, "")
- (888888, "")
- (911234, "")
- (952442, ")"""

Pelle Jakovits
Term co-occurrence matrix

- Term co-occurrence matrix for a text collection
 - $M = N \times N$ matrix (N = vocabulary size)
 - M_{ij}: number of times i and j co-occur in some context (let’s say context = sentence)

- Why?
 - Distributional profiles as a way of measuring semantic distance
 - Semantic distance useful for many language processing tasks

 “You shall know a word by the company it keeps” (Firth, 1957)

- How large is the resulting matrix?
- How many elements do we need to count?

E.g., Mohammad and Hirst (EMNLP, 2006)
Large Counting Problems

• Term co-occurrence matrix for a text collection => specific instance of a large counting problem
 – A large event space (number of terms)
 – A large number of events (the collection itself)
 – Goal: keep track of interesting statistics about the events

• Basic approach
 – Mappers generate partial counts
 – Reducers aggregate partial counts

How do we aggregate partial counts efficiently?
First approach: “Pairs”

• WordCount-like approach
• Each mapper takes a sentence:
 – Generate all co-occurring term pairs
 – For all pairs, emit \((a, b) \rightarrow \text{count}\)
• Reducers sums up counts associated with these pairs
• Use combiners!
“Pairs” Analysis

• Advantages
 – Easy to implement
 – Easy to understand

• Disadvantages
 – Lots of pairs to sort and shuffle around (upper bound?)
Second approach: “Stripes”

• Idea: group together pairs into an associative array

(a, b) → 1
(a, c) → 2
(a, d) → 5
(a, e) → 3
(a, f) → 2

→ a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

• Each mapper takes a sentence:
 – Generate all co-occurring term pairs
 – For each term, emit a → { b: count_b, c: count_c, d: count_d ... }

•Reducers perform element-wise sum of associative arrays

\[
\begin{align*}
 a &\rightarrow \{ b: 1, \quad d: 5, \quad e: 3 \} \\
 + a &\rightarrow \{ b: 1, \quad c: 2, \quad d: 2, \quad f: 2 \} \\
 \hline
 a &\rightarrow \{ b: 2, \quad c: 2, \quad d: 7, \quad e: 3, \quad f: 2 \}
\end{align*}
\]
“Stripes” Analysis

• Advantages
 – Far less sorting and shuffling of key-value pairs
 – Can make better use of combiners

• Disadvantages
 – More difficult to implement
 – Underlying object is more heavyweight
 – Fundamental limitation in terms of size of event space
Managing Dependencies in Data

• Remember, Mappers run in isolation. We can't control:
 – The order in which mappers run
 – On which nodes the mappers run
 – When each mapper finishes

• Available tools for synchronization:
 – Ability to hold state in reducer across multiple key-value pairs
 – Sorting function for keys
 – Partitioners
 – Broadcasting/replicating values
 – Cleverly-constructed data structures
Conditional Probabilities

• What is the chance of word B occurring in a sentence that contains word A.

• How do we compute conditional probabilities from counts?

\[
P(B|A) = \frac{\text{count}(A, B)}{\text{count}(A)} = \frac{\text{count}(A, B)}{\sum_{B'} \text{count}(A, B')}
\]

• How do we compute this with MapReduce?
P(B | A): “Pairs”

- Co-occurrence matrix already gives us: \(\text{count}(A, B)\)
- Need to also compute \(\text{count}(A)\)

\[
\begin{align*}
(a, *) & \rightarrow 23 & \text{Reducer holds this value in memory} \\
(a, b_1) & \rightarrow 3 \\
(a, b_2) & \rightarrow 12 \\
(a, b_3) & \rightarrow 7 \\
(a, b_4) & \rightarrow 1
\end{align*}
\]

- How can we compute \(\text{count}(a)\) without changing how the data is grouped?
 - Must also emit an extra \((a, *)\) for every \(b_n\) in mapper
 - Must make sure all a’s get sent to same reducer (use Partitioner)
 - Must make sure \((a, *)\) comes first (define sort order)
P(B|A): “Stripes”

\[a \rightarrow \{ b_1 : 3, b_2 : 12, b_3 : 7, b_4 : 1, \ldots \} \]

- Easy!
 - One pass to compute (a, *)
 - Another pass to directly compute P(B|A)
Synchronization in Hadoop

• **Approach 1:** turn synchronization into an ordering problem
 – Partition key space so that each reducer gets the appropriate set of partial results
 – Sort keys into correct order of computation
 – Hold state in reducer across multiple key-value pairs to perform computation
 – Illustrated by the “pairs” approach

• **Approach 2:** construct data structures that “bring the pieces together”
 – Each reducer receives all the data it needs to complete the computation
 – Illustrated by the “stripes” approach
Issues and Tradeoffs

• Number of key-value pairs
 – Object creation overhead
 – Time for sorting and shuffling pairs across the network

• Size of each key-value pair
 – De/serialization overhead

• Combiners make a big difference!
 – RAM vs. disk and network
 – Arrange data to maximize opportunities to aggregate partial results
Complex Data Types in Hadoop

• How to use more complex data types as Keys and Values?
 • The easiest way:
 – Encode it as a composed String, e.g., \((a, b) = "a;b"\)
 – Use regular expressions to parse and extract data
 – Works, but pretty hack-ish
 • The hard way:
 – Define a custom implementation of WritableComparable
 – Must implement: readFields, write, compareTo
 – Computationally more efficient, but slow for rapid prototyping
public class MyKey implements WritableComparable {
 private int ID;
 private long phone_num;

 public void write(DataOutput out) {
 out.writeInt(ID);
 out.writeLong(phone_num);
 }

 public void readFields(DataInput in) {
 ID = in.readInt();
 phone_num = in.readLong();
 }

 public int compareTo(MyKey o) {
 int res = Integer.compare(this.ID, o.ID);
 if (res != 0)
 return res;
 return Long.compare(this.phone_num, o.phone_num);
 }
}
Advantages of Hadoop MapReduce

• Simple, but powerful programming model

• Scales to handle petabyte+ workloads
 – Google: six hours and two minutes to sort 1PB (10 trillion 100-byte records) on 4,000 computers
 – Yahoo!: 16.25 hours to sort 1PB on 3,800 computers

• Incremental performance improvement with more nodes

• Seamlessly handles failures, but with performance penalties
Issues with MapReduce

• Not suitable for Iterative CPU-intensive applications!
 – Data must be stored on Disk
 – No way to cache data between recursive MapReduce jobs
 – Not suitable for Iterative algorithms, graph processing, machine learning

• MapReduce is often not used **directly**, because:
 – Writing low level Java MapReduce code is slow
 – Need a lot of expertise to optimize
 – Prototyping is slow, a lot of custom code is required
 – Hard to manage more complex MapReduce job chains

• Extensions:
 – Apache Hive, Pig, Spark
Conclusions

• You can adapt many/most typical algorithms to MapReduce
 – But it is not efficient for highly iterative tasks
• Use Hadoop MapReduce when the input does not fit into the memory (of the cluster)
References

• Jimmy Lin and Chris Dyer, "Data-Intensive Text Processing with MapReduce"
 Pages 50-57: Pairs and Stripes problem