DataFrame abstraction
Parallel Machine Learning

Pelle Jakovits

30 November, 2020, Tartu
Outline

• DataFrame abstraction
• Spark DataFrame API
• Parallel Machine Learning
DataFrame abstraction

• DataFrame is a tabular format of data
 – Data objects are divided into rows and labelled columns
 – Column data types are fixed

• Simplifies working with tabular datasets
 – Restructuring and manipulating tables
 – Applying user defined functions to a set of columns

• DataFrame implementations
 – Pandas DataFrame in Python
 – DataFrames in R
DataFrame abstraction

Source: https://www.geeksforgeeks.org/python-pandas-dataframe/
Spark DataFrames

• Stored in Resilient Distributed Datasets (RDD)
 – Operations on Spark DataFrames are inherently parallel
• Shares built-in & UDF functions with HiveQL and Spark SQL
• Different API from Spark RDD
 – DataFrame API is more column focused
 – Functions are applied on columns rather than row tuples
 – `map(fun) -> select(cols), withColumn(col, fun(col))`
 – `reduceByKey(fun) -> agg(fun(col)), sum(col), count(col)`
Spark DataFrames

• Optimized under-the-hood
 – Logical execution plan optimizations
 – Physical code generation and deployment optimizations
• Can be constructed from a wide array of sources
 – Structured data files (json, csv, …)
 – Existing Spark RDDs
 – Python Pandas or R DataFrames
 – External relational and non-relational databases
Loading DataFrames from files

• DataFrame schema can be generated automatically
• Reading data From JSON file example:

```python
df = spark.read.option("inferSchema", True) \  .json("/data/people.json")
```

• Reading data From CSV file:

```python
df = spark.read.option("header","true") \  .option("inferSchema", True) \  .option("delimiter", ":") \  .csv("/data/Top_1000_Songs.csv")
```
Creating DataFrame from RDD

- When loading from an existing RDD, we must specify schema separately
- Example: RDD `people`, which contains tuples of `(name, age)`

```python
schema = StructType([  
    StructField("name", StringType(), True),  
    StructField("age", StringType(), True)])

peopleDF = spark.createDataFrame(people, schema)
```
import numpy as np
import pandas as pd

matrix = np.random.rand(6, 6)
dataframe = pd.DataFrame(matrix)

sparkDF = spark.createDataFrame(dataframe)
Saving DataFrames

- Can save DF's in csv, json, text, binary, etc. format
- You can control how many files are created using:
 - `df.coalesce(N)`
 - It re-structures DF into N partitions
 - Be careful, each DF partition should fit into memory!

```python
df.write.format("csv")
  .option("header",True) 
  .option("compression","gzip") 
  .save("output_folder")
```

```python
df.coalesce(1).write.format("json") 
  .save("output_folder")
```
Spark DataFrame DB connectors

• Load DataFrame from PostgreSQL table

  ```java
  jdbcDF = spark.read \\
  .format("jdbc") \\
  .option("url", "jdbc:postgresql:dbserver") \\
  .option("dbtable", "schema.tablename") \\
  .option("user", "username") \\
  .option("password", "password") \\
  .load()
  ```

• Store Dataframe into PostgreSQL table

  ```java
  jdbcDF.write \\
  .format("jdbc") \\
  .option("url", "jdbc:postgresql:dbserver") \\
  .option("dbtable", "schema.tablename") \\
  .option("user", "username") \\
  .option("password", "password") \\
  .save()
  ```
Manipulating DataFrames

• DataFrame operations
 – Provide information about DataFrame content and structure
 – Transform DataFrame structure
 – Group, select, add, modify columns

• Column Functions
 – Generate or change the content of columns
 – Shares the same column functions with SQL
 – Can add UDF's as new Column functions
Structure of the DataFrame

```python
bank_accounts.printSchema()

root
|-- Last_Name: string (nullable = true)
|-- First_Name: string (nullable = true)
|-- Balance: double (nullable = true)
|-- Address: string (nullable = true)
|-- City: string (nullable = true)
|-- Last_Trans: string (nullable = true)
|-- bank_name: string (nullable = true)
```
bank_accounts.show()

<table>
<thead>
<tr>
<th>Last_Name</th>
<th>First_Name</th>
<th>Balance</th>
<th>Address</th>
<th>City</th>
<th>Last_Trans</th>
<th>bank_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>KELLY</td>
<td>JUSTIN R</td>
<td>74.5</td>
<td></td>
<td>UNKNOWN,UNKNOWN</td>
<td>02/26/1983</td>
<td>BANK OF NOVA SCOTIA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.88</td>
<td></td>
<td></td>
<td>06/04/1993</td>
<td>TORONTO-DOMINION BANK</td>
</tr>
<tr>
<td>NEED NEWS</td>
<td></td>
<td>787.51</td>
<td>12055 - 95 ST.</td>
<td>Edmonton</td>
<td>04/02/1980</td>
<td>HSBC BANK CANADA</td>
</tr>
<tr>
<td>BIANCHI</td>
<td>BERNARD</td>
<td>357.98</td>
<td></td>
<td></td>
<td>03/29/1995</td>
<td>HSBC BANK CANADA</td>
</tr>
<tr>
<td>CHAN</td>
<td>SUI PANG</td>
<td>102.34</td>
<td></td>
<td></td>
<td>04/17/1990</td>
<td>BANK OF MONTREAL</td>
</tr>
</tbody>
</table>

bank_accounts.select("Balance", "City")

<table>
<thead>
<tr>
<th>City</th>
<th>Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANMORE ALTA</td>
<td>ROYAL BANK OF CANADA</td>
</tr>
<tr>
<td>CHIPMAN</td>
<td>CANADIAN IMPERIAL BANK OF COMMERCE</td>
</tr>
<tr>
<td>EDMONTON, ALBERTA T5</td>
<td>HSBC BANK CANADA</td>
</tr>
<tr>
<td>Edmonton</td>
<td>ING BANK OF CANADA</td>
</tr>
<tr>
<td>TOKYO JAPAN</td>
<td>BANK OF MONTREAL</td>
</tr>
</tbody>
</table>
DataFrame Example - WordCount

Load the dataframe content from a text file, Lines DataFrame contains a single column: value - a single line from the text file.
lines = spark.read.text(input_folder)

#Split the value column into words and explode the resulting list into multiple records, Explode and split are column functions
words = lines.select(explode(split(lines.value, " ")).alias("word"))

#group by Word and apply count function
wordCounts = words.groupBy("word").count()

#print out the results
wordCounts.show(10)
Working with columns

• Addressing columns:
 – df.column
 – df['column']
 – F.col("column")
 – "column"

accounts.select("Balance",
accounts.Balance,
accounts['Balance'],
F.col("Balance"))
Modifying columns

- Rename column
 - `df.col.alias("new_label")`

- Cast column into another type
 - `df.col.cast("string")`
 - `df.col("Balance").cast(StringType())`

```
accounts.select(accounts.balance.cast("double").alias("bal"))
```
Adding columns

• Add a new column
 – `df2 = df.withColumn('age2', df.age + 2)`
 – If new column label already exists, it is replaced/overwritten

• Rename a column:
 – `df2 = df.withColumnRenamed('age', 'age2')`
Filtering rows

```python
bank_accounts.filter("Last_Trans LIKE '%1980' ")
bank_accounts.filter(bank_accounts.Last_Trans.contains("1980"))
```

<table>
<thead>
<tr>
<th>Last_Name</th>
<th>First_Name</th>
<th>Balance</th>
<th>Address</th>
<th>City</th>
<th>Last_Trans</th>
<th>bank_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEED NEWS</td>
<td></td>
<td>787.51</td>
<td>12055 - 95 ST.</td>
<td>Edmonton</td>
<td>04/02/1980</td>
<td>HSBC BANK CANADA</td>
</tr>
<tr>
<td>BAKER</td>
<td>DAPHNE</td>
<td>93.85</td>
<td></td>
<td></td>
<td></td>
<td>BANK OF MONTREAL</td>
</tr>
<tr>
<td>AKIYAMA</td>
<td>M</td>
<td>5646.64</td>
<td>RC 2-4</td>
<td>UTSUNOMIYA</td>
<td>11/13/1980</td>
<td>ROYAL BANK OF CANADA</td>
</tr>
<tr>
<td>WATSON</td>
<td>RONALD</td>
<td>5199.89</td>
<td>PO STN C</td>
<td>Edmonton</td>
<td>01/09/1980</td>
<td>ROYAL BANK OF CANADA</td>
</tr>
<tr>
<td>LO</td>
<td>ANNIE</td>
<td>4256.07</td>
<td>14208 96 AVENUE</td>
<td>Edmonton</td>
<td>04/18/1980</td>
<td>ROYAL BANK OF CANADA</td>
</tr>
</tbody>
</table>
Grouping DataFrames

```python
bank_accounts.groupby("City", "bank_name").sum("Balance")
bank_accounts.groupby("City", "bank_name").agg(F.sum("Balance"))
```

<table>
<thead>
<tr>
<th>City</th>
<th>bank_name</th>
<th>sum(Balance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YELLOWKNIFE NT</td>
<td>BANK OF MONTREAL</td>
<td>1790.68</td>
</tr>
<tr>
<td>TOKYO JAPAN</td>
<td>BANK OF MONTREAL</td>
<td>751.94</td>
</tr>
<tr>
<td>EDMONTON, ALBERTA T5</td>
<td>HSBC BANK CANADA</td>
<td>528.28</td>
</tr>
<tr>
<td>Edmonton</td>
<td>ING BANK OF CANADA</td>
<td>636.42</td>
</tr>
<tr>
<td>CANMORE ALTA</td>
<td>ROYAL BANK OF CAN...</td>
<td>51.37</td>
</tr>
<tr>
<td>CHIPMAN</td>
<td>CANADIAN IMPERIAL...</td>
<td>20.59</td>
</tr>
<tr>
<td>ST. ALBERT AB</td>
<td>HSBC BANK CANADA</td>
<td>83.57</td>
</tr>
</tbody>
</table>
Joining DataFrames

- DataFrames can be joined by defining the join expression or join key
- Supports broadcast join
 - One DataFrame is fully read into memory and In-Memory join is performed
 - Wrap one of the tables with `broadcast(df)`
 - When both joined tables are marked, Spark broadcasts smaller table.

```python
df = business.join(review,
   business.business_id == review.business_id)

df = business.join(review, "business_id")

df = broadcast(business).join(review, "business_id")
```
Window functions

• Allows to modify how aggregation functions are applied inside DataFrames
• Compute nested aggregations without changing the original DataFrame structure
• Process rows in groups while still returning a single value for every input row
• Supports sliding windows and cumulative aggregations
Over(\textsc{Window})

\begin{verbatim}
bankWind = Window.partitionBy("bank_name")

cityWind = Window.partitionBy("City")

\texttt{bank_a.select("City", "bank_name", "Balance") \wedge \\
\.withColumn("bank_sums", F.sum("Balance").over(bankWind)) \wedge \\
\.withColumn("city_sums", F.sum("Balance").over(cityWind))
\end{verbatim}

<table>
<thead>
<tr>
<th>City</th>
<th>bank_name</th>
<th>Balance</th>
<th>bank_sums</th>
<th>city_sums</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONG KONG</td>
<td>HSBC BANK CANADA</td>
<td>82.67</td>
<td>477164.0</td>
<td>1147.0</td>
</tr>
<tr>
<td>HONG KONG</td>
<td>ROYAL BANK OF CANADA</td>
<td>1064.79</td>
<td>1341940.0</td>
<td>1147.0</td>
</tr>
<tr>
<td>THORSBY ALTA</td>
<td>ROYAL BANK OF CANADA</td>
<td>177.39</td>
<td>1341940.0</td>
<td>177.0</td>
</tr>
<tr>
<td>IRMA AB</td>
<td>BANK OF MONTREAL</td>
<td>2264.51</td>
<td>1476425.0</td>
<td>2265.0</td>
</tr>
<tr>
<td>RADWAY AB</td>
<td>BANK OF MONTREAL</td>
<td>182.04</td>
<td>1476425.0</td>
<td>182.0</td>
</tr>
<tr>
<td>AIRDRIE AB</td>
<td>BANK OF MONTREAL</td>
<td>397.79</td>
<td>1476425.0</td>
<td>432.0</td>
</tr>
<tr>
<td>AIRDRIE AB</td>
<td>TORONTO-DOMINION BANK</td>
<td>34.35</td>
<td>1154282.0</td>
<td>432.0</td>
</tr>
<tr>
<td>STAR CAN</td>
<td>TORONTO-DOMINION BANK</td>
<td>45.11</td>
<td>1154282.0</td>
<td>45.0</td>
</tr>
</tbody>
</table>
\end{verbatim}
Cumulative aggregation

```java
bankWind = Window.partitionBy("bank_name").orderBy("year")
bank_a.select("bank_name", "Balance", "year")
    .withColumn("cumul_sum", F.sum("Balance").over(bankWin)))
```

<table>
<thead>
<tr>
<th>bank_name</th>
<th>Balance</th>
<th>year</th>
<th>cumul_sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANADIAN IMPERIAL BANK OF COMMERCE</td>
<td>821.07</td>
<td>1935</td>
<td>821.07</td>
</tr>
<tr>
<td>CANADIAN IMPERIAL BANK OF COMMERCE</td>
<td>2572.61</td>
<td>1939</td>
<td>3393.68</td>
</tr>
<tr>
<td>CANADIAN IMPERIAL BANK OF COMMERCE</td>
<td>1974.39</td>
<td>1948</td>
<td>5368.07</td>
</tr>
<tr>
<td>CANADIAN IMPERIAL BANK OF COMMERCE</td>
<td>1732.65</td>
<td>1960</td>
<td>7100.72</td>
</tr>
<tr>
<td>CANADIAN IMPERIAL BANK OF COMMERCE</td>
<td>1954.07</td>
<td>1961</td>
<td>11791.81</td>
</tr>
<tr>
<td>CANADIAN IMPERIAL BANK OF COMMERCE</td>
<td>1706.68</td>
<td>1961</td>
<td>11791.81</td>
</tr>
<tr>
<td>CANADIAN IMPERIAL BANK OF COMMERCE</td>
<td>1030.34</td>
<td>1961</td>
<td>11791.81</td>
</tr>
<tr>
<td>CANADIAN IMPERIAL BANK OF COMMERCE</td>
<td>1799.0</td>
<td>1965</td>
<td>13590.81</td>
</tr>
</tbody>
</table>
Sliding Window

• RowsBetween – Window size based on fixed number of rows

```java
Window.partitionBy("bank_name")
  .orderBy("year")
  .rowsBetween(-2, 2)
```

• RangeBetween - Window size based on column values

```java
Window.partitionBy("bank_name")
  .orderBy("year")
  .rangeBetween(-10, 10)
```
Example: Term Weighting

• Term weights consist of two components
 – Local: how important is the term in this document?
 – Global: how important is the term in the collection?

• Here’s the intuition:
 – Terms that appear often in a document should get high weights
 – Terms that appear in many documents should get low weights

• How do we capture this mathematically?
 – Term frequency (local)
 – Inverse document frequency (global)
TF-IDF

\[w_{i,j} = tf_{i,j} \cdot \log \frac{N}{n_i} \]

- \(w_{i,j} \) weight assigned to term \(i \) in document \(j \)
- \(tf_{i,j} \) number of occurrence of term \(i \) in document \(j \)
- \(N \) number of documents in entire collection
- \(n_i \) number of documents with term \(i \)

TF-IDF: Term frequency – Inverse Document Frequency
TF-IDF with DataFrames

words = lines.select(
 F.explode(F.split("value", "[^a-zA-Z]+"))
 .alias("word"),
 F.substring_index("file", '/', -1).alias("file")
)

#Extract document name and split lines into words

counts = words.groupBy("word", "file")
 .agg(F.count("*").alias("n"))

#Compute WordCount

fileWind = Window.partitionBy("file")
wordWind = Window.partitionBy("word")

withN = counts.withColumn("bigN", F.sum("n").over(fileWind))
 .withColumn("m", F.count("*").over(wordWind))

#Compute N and m as new columns

tfidf = withN.withColumn(
 "tfidf",
 withN['n']/withN['bigN'] * F.log2(D/withN['m'])
)

#Finally compute TF-IDF value
Load Input Documents

```python
lines = spark.read.text("in").withColumn("file", F.input_file_name()).
lines.show(10, False)
```

<table>
<thead>
<tr>
<th>value</th>
<th>file</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Project Gutenberg EBook of Frank Merriwell at Yale, by Burt L. Standish</td>
<td>file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt</td>
</tr>
<tr>
<td>This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.net</td>
<td>file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt</td>
</tr>
<tr>
<td>Title: Frank Merriwell at Yale</td>
<td>file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt</td>
</tr>
</tbody>
</table>
Extract document name and split lines into words

words = lines.select(
 F.explode(F.split("value", "[^a-zA-Z]+")) alias "word",
 F.substring_index("file", '/', -1) alias "file"
)

+-----------------+------+
| file | word |
+-----------------+------+
11115.txt	The
11115.txt	Project
11115.txt	Gutenberg
11115.txt	EBook
11115.txt	of
11115.txt	Frank
11115.txt	Merriwell
11115.txt	at
11115.txt	Yale
11115.txt	by
+-----------------+------+
First WordCount

counts = words.groupBy("word", "file")
 .agg(F.count("*").alias("n"))

+-----------------+------------------+
| file | word | n |
+-----------------+------------------+
11115.txt	accomplish	4
11115.txt	will	244
11115.txt	white	24
11115.txt	midst	3
11115.txt	resumed	2
11115.txt	rubbing	4
11115.txt	powwow	1
11115.txt	people	9
11115.txt	Our	3
11115.txt	familiar	8
+-----------------+------------------+
Compute N and m as new columns

```scala
fileWind = Window.partitionBy("file")
wordWind = Window.partitionBy("word")

withN = counts.withColumn("bigN", F.sum("n").over(fileWind)) \
    .withColumn("m", F.count("*").over(wordWind))
```

<table>
<thead>
<tr>
<th>file</th>
<th>word</th>
<th>n</th>
<th>bigN</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>11115.txt</td>
<td>By</td>
<td>26</td>
<td>90089</td>
<td>2</td>
</tr>
<tr>
<td>11102.txt</td>
<td>By</td>
<td>12</td>
<td>47979</td>
<td>2</td>
</tr>
<tr>
<td>11102.txt</td>
<td>Cannot</td>
<td>1</td>
<td>47979</td>
<td>1</td>
</tr>
<tr>
<td>11115.txt</td>
<td>Drink</td>
<td>4</td>
<td>90089</td>
<td>1</td>
</tr>
<tr>
<td>11102.txt</td>
<td>Easter</td>
<td>2</td>
<td>47979</td>
<td>1</td>
</tr>
<tr>
<td>11102.txt</td>
<td>Heaven</td>
<td>1</td>
<td>47979</td>
<td>1</td>
</tr>
<tr>
<td>11102.txt</td>
<td>JOHNSON</td>
<td>4</td>
<td>47979</td>
<td>1</td>
</tr>
<tr>
<td>11102.txt</td>
<td>July</td>
<td>25</td>
<td>47979</td>
<td>1</td>
</tr>
</tbody>
</table>
Finally compute TF-IDF

tfidf = withN.withColumn(
 "tfidf",
 withN['n']/withN['bigN'] * F.log2(D/withN['m']))

+-------------------+-------------------+---------+--------+---------+-------------------+
| word | file | n | bigN | m | tfidf |
+-------------------+-------------------+---------+--------+---------+-------------------+
By	11115.txt	26	90089	2	0.0
By	11102.txt	12	47979	2	0.0
Cannot	11102.txt	1	47979	1	2.084245190604222
Drink	11115.txt	4	90089	1	4.440053724650068E-5
Easter	11102.txt	2	47979	1	4.168490381208445
Heaven	11102.txt	1	47979	1	2.084245190604222
July	11102.txt	25	47979	1	5.210612976510557E-4
+-------------------+-------------------+---------+--------+---------+-------------------+
Crosstab

- Crosstab operation creates a frequency table between two DataFrame columns

```python
bank_accounts.crosstab("City", "bank_name")
```

<table>
<thead>
<tr>
<th>City_bank_name</th>
<th>BANK OF MONTREAL</th>
<th>BANK OF NOVA SCOTIA</th>
<th>CITIBANK CANADA</th>
<th>HSBC BANK CANADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>URANIUM CITY SASK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUNDRE ALTA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GRIMSHAW,AB</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NANAIMO BC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ARLINGTON USA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MESA,USA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOFIELD AB</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TETTENHALL, WOLVE...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Pivot

- **pivot**(col, [fields]) DF into a crosstable with a chosen aggregation function
- Takes an optional list of **fields** to transform into columns, otherwise all possible values of pivot column are transformed into columns

```r
bank_accounts.groupBy("City") \n  .pivot("bank_name", ["BANK OF MONTREAL ", "BANK OF NOVA SCOTIA ", "CITIBANK CANADA "] ) \n  .sum("Balance")
```

<table>
<thead>
<tr>
<th>City</th>
<th>BANK OF MONTREAL</th>
<th>BANK OF NOVA SCOTIA</th>
<th>CITIBANK CANADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edmonton</td>
<td>775441.37</td>
<td>10147.86</td>
<td>3825.5</td>
</tr>
<tr>
<td>St. Albert</td>
<td>36592.55</td>
<td>1065.36</td>
<td>6.75</td>
</tr>
<tr>
<td>Sherwood Park</td>
<td>29561.52</td>
<td>374.14</td>
<td>6.72</td>
</tr>
<tr>
<td>Stony Plain</td>
<td>20848.49</td>
<td>109.8</td>
<td>null</td>
</tr>
<tr>
<td>Leduc</td>
<td>9509.77</td>
<td>5.57</td>
<td>8.82</td>
</tr>
<tr>
<td>EDMONTON</td>
<td>8515.96</td>
<td>null</td>
<td>null</td>
</tr>
</tbody>
</table>

35
Other functions

- **collect_list(col)**
 - Aggregation function to collect all fields from a column into a list
- **sort_array(col)**
 - Sort array or list inside a column
- **histogram(col, bins)**
 - Computes a histogram of a column using non-uniformly spaced bins.
- **sentences(string str, string lang, string locale)**
 - Tokenizes a string of natural language text into sentences
- **ngrams(sentences, int N, int K, int pf)**
 - Returns the top-k N-grams from a set of tokenized sentences
- **corr(col1, col2)**
 - Returns the Pearson coefficient of correlation of a pair of two numeric columns
User Defined Functions

- Java, Scala, Python, R functions can be used as UDF
- Python functions can be used directly, but must specify their output schema and data types
- Special Pandas DataFrame UDFs

```python
tfidf_udf = F.udf(tfidf, DoubleType())
```
Spark UDF example

def top3(balances):
 # Define Python function
 sorted(balances)
 top2 = balances[1] if len(balances) > 1 else None
 top3 = balances[2] if len(balances) > 2 else None
 return (balances[0], top2, top3)

schema = StructType([
 StructField("top1", DoubleType(), True),
 StructField("top2", DoubleType(), True),
 StructField("top3", DoubleType(), True),
])

Define function output data structure

top3_udf = F.udf(top3, schema)

Register function as UDF
Spark UDF example II

tops = bank_accounts.groupby("City", "bank_name")
tops.agg(top3_udf(collect_list("Balance"))).alias("balances")

<table>
<thead>
<tr>
<th>City</th>
<th>bank_name</th>
<th>balances</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANMORE ALTA</td>
<td>ROYAL BANK OF CANADA</td>
<td>[51.37,,]</td>
</tr>
<tr>
<td>CHIPMAN</td>
<td>CANADIAN IMPERIAL BANK OF COMMERCE</td>
<td>[20.59,,]</td>
</tr>
<tr>
<td>EDMONTON, ALBERTA T5</td>
<td>HSBC BANK CANADA</td>
<td>[528.28,,]</td>
</tr>
<tr>
<td>Edmonton</td>
<td>ING BANK OF CANADA</td>
<td>[291.26, 155.53, 136.17]</td>
</tr>
<tr>
<td>TOKYO JAPAN</td>
<td>BANK OF MONTREAL</td>
<td>[751.94,,]</td>
</tr>
</tbody>
</table>

root
|-- City: string (nullable = true)
|-- bank_name: string (nullable = true)
|-- balances: struct (nullable = true)
| |-- top1: double (nullable = true)
| |-- top2: double (nullable = true)
| |-- top3: double (nullable = true)
Selecting nested columns

tops.select("City", "bank_name", "balances.top1", "balances.top2", "balances.top3")

<table>
<thead>
<tr>
<th>City</th>
<th>bank_name</th>
<th>top1</th>
<th>top2</th>
<th>top3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANMORE ALTA</td>
<td>ROYAL BANK OF CANADA</td>
<td>51.37</td>
<td>null</td>
<td>null</td>
</tr>
<tr>
<td>CHIPMAN</td>
<td>CANADIAN IMPERIAL BANK</td>
<td>20.59</td>
<td>null</td>
<td>null</td>
</tr>
<tr>
<td>EDMONTON, ALBERTA T5</td>
<td>HSBC BANK CANADA</td>
<td>528.28</td>
<td>null</td>
<td>null</td>
</tr>
<tr>
<td>Edmonton</td>
<td>ING BANK OF CANADA</td>
<td>291.26</td>
<td>155.53</td>
<td>136.17</td>
</tr>
<tr>
<td>TOKYO JAPAN</td>
<td>BANK OF MONTREAL</td>
<td>751.94</td>
<td>null</td>
<td>null</td>
</tr>
<tr>
<td>YELLOWKNIFE NT</td>
<td>BANK OF MONTREAL</td>
<td>1790.68</td>
<td>null</td>
<td>null</td>
</tr>
<tr>
<td>SHERWOOD PARK,AB</td>
<td>BANK OF NOVA SCOTIA</td>
<td>144.3</td>
<td>130.28</td>
<td>113.27</td>
</tr>
</tbody>
</table>
RDD vs DataFrames

- **RDD**
 - When dealing with Raw unstructured data
 - When dealing with tuples of variable length and types
 - Need to apply lower-level transformations
 - Want to optimize on the lower-level

- **DataFrames**
 - When data is structured in a (nested) tabular format
 - Fixed number of columns and fixed column types
 - General data transformation operations (groupBy, withColumn, agg) are enough
 - More information about the data structure/schema gives more opportunity for automatic optimization
Spark Machine learning library

• A set of scalable machine learning methods implemented in Spark
• Accessible through both RDD and DataFrame interface
 – DataFrame based ML API `spark.ml` is considered primary
 – RDD-based APIs in the `spark.mllib` package is in maintenance mode
Spark ML-Lib functionality

• **Feature manipulation**
 – feature extraction, transformation, selection, dimensionality reduction

• **Machine learning methods**
 – Regression, classification, clustering, etc.

• **Pipelines**

• **Persistence**
 – Models and Pipelines

• **Utilities**
 – Linear algebra, data formats, UDF’s, etc.
 – Statistical Summarizer, Hypothesis testing, Correlation matrices
Feature manipulation

• **Feature Extractors**
 – TF-IDF, Word2Vec, CountVectorizer, FeatureHasher (hash trick)

• **Feature Selectors**
 – VectorSlicer, Rformula
 – ChiSqSelector (Pick top features according to a chi-squared test)

• **Feature Transformers**
 – Tokenizer, n-gram, Normalizer, VectorAssembler
Classification & Regression

Classification
- Decision tree classifier
- Random forest classifier
- Linear Support Vector Machine
- Naive Bayes
- Logistic regression
- Binomial logistic regression
- Multinomial logistic regression
- Gradient-boosted tree classifier
- Multilayer perceptron classifier
- One-vs-Rest classifier

Regression
- Linear regression
- Generalized linear regression
- Available families
- Decision tree regression
- Random forest regression
- Gradient-boosted tree regression
- Survival regression
- Isotonic regression
Clustering and recommendation

- **K-means**
- **Latent Dirichlet allocation (LDA)**
 - Document topic modelling
 - Topics are cluster centers
- **Bisecting k-means - Hierarchical clustering**
- **Gaussian Mixture Model (GMM)**
 - Probabilistic: avoid fixing data objects into specific cluster
 - Better when clusters have different „shapes“ and sizes

Collaborative filtering
- Recommender systems
- Predict what users like based on what similar users have liked
K-means example (Iris dataset)

```python
dataset = spark.read.option("inferSchema", True).csv(input_file) 
.toDF("slen", "swidth", "plen", "pwidth", "class")

+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| slen | swidth | plen | pwidth | class          |
|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| 5.1  | 3.5    | 1.4  | 0.2   | Iris-setosa    |
| 4.9  | 3.0    | 1.4  | 0.2   | Iris-setosa    |
| 4.7  | 3.2    | 1.3  | 0.2   | Iris-setosa    |
| 4.6  | 3.1    | 1.5  | 0.2   | Iris-setosa    |
| 5.0  | 3.6    | 1.4  | 0.2   | Iris-setosa    |
| 5.4  | 3.9    | 1.7  | 0.4   | Iris-setosa    |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------

dataset.select("class").distinct().show()

+-----------------+
| class           |
|-----------------+
| Iris-virginica  |
| Iris-setosa     |
| Iris-versicolor |
+-----------------+
Feature selection using VectorAssembler

```python
assembler = VectorAssembler(
 inputCols=['slen', 'swidth', 'plen', 'pwidth'],
 outputCol='features')
featured = assembler.transform(dataset)
```

<table>
<thead>
<tr>
<th>slen</th>
<th>swidth</th>
<th>plen</th>
<th>pwidth</th>
<th>class</th>
<th>features</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[5.1,3.5,1.4,0.2]</td>
</tr>
<tr>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[4.9,3.0,1.4,0.2]</td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[4.7,3.2,1.3,0.2]</td>
</tr>
<tr>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[4.6,3.1,1.5,0.2]</td>
</tr>
<tr>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[5.0,3.6,1.4,0.2]</td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>Iris-setosa</td>
<td>[5.4,3.9,1.7,0.4]</td>
</tr>
</tbody>
</table>
Building and using the K-Means model

```python
kmeans = KMeans().setK(3).setSeed(1)
model = kmeans.fit(featured)
predictions = model.transform(featured)
predictions.show(10, False)
```

<table>
<thead>
<tr>
<th>slen</th>
<th>swidth</th>
<th>plen</th>
<th>pwidth</th>
<th>class</th>
<th>features</th>
<th>prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[5.1, 3.5, 1.4, 0.2]</td>
<td>2</td>
</tr>
<tr>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[4.9, 3.0, 1.4, 0.2]</td>
<td>2</td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[4.7, 3.2, 1.3, 0.2]</td>
<td>2</td>
</tr>
<tr>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[4.6, 3.1, 1.5, 0.2]</td>
<td>2</td>
</tr>
<tr>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[5.0, 3.6, 1.4, 0.2]</td>
<td>2</td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>Iris-setosa</td>
<td>[5.4, 3.9, 1.7, 0.4]</td>
<td>2</td>
</tr>
<tr>
<td>4.6</td>
<td>3.4</td>
<td>1.4</td>
<td>0.3</td>
<td>Iris-setosa</td>
<td>[4.6, 3.4, 1.4, 0.3]</td>
<td>2</td>
</tr>
<tr>
<td>5.0</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[5.0, 3.4, 1.5, 0.2]</td>
<td>2</td>
</tr>
<tr>
<td>4.4</td>
<td>2.9</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
<td>[4.4, 2.9, 1.4, 0.2]</td>
<td>2</td>
</tr>
<tr>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1</td>
<td>Iris-setosa</td>
<td>[4.9, 3.1, 1.5, 0.1]</td>
<td>2</td>
</tr>
</tbody>
</table>
```
Clustering results

- Let's evaluate how well the classes were distributed among the clusters.
- We can apply the Spark DataFrame crosstab operation.

```
predictions.crosstab("class", "prediction").show()
```

```
+----------------+
|class_prediction| 0 | 1 | 2 |
|----------------|
|Iris-virginica  | 14| 0 | 36|
|Iris-setosa     |  0|50 |  0|
|Iris-versicolor | 48| 0 |  2|
|----------------|
```
ML Pipelines

- Spark ML operations can be chained into pipelines
- Join VectorAssembler and Kmeans into a single Pipeline

```python
assembler = VectorAssembler(
    inputCols = ["slen", "swidth", "plen", "pwidth"],
    outputCol = "features")

kmeans = KMeans().setK(3).setSeed(1)

pipeline = Pipeline(stages = [assembler, kmeans])
model = pipeline.fit(dataset)
```
Model persistence

- Models and pipelines can be saved to the filesystem (HDFS) and later loaded from there
- Allows to build models/pipelines ahead of time
- Built models can be migrated to other servers/clusters
- Saving models:

```python
model.save("myKmeansPipeline")
```

- Loading saved models:

```python
saved_model = KMeansModel.load("myKmeansPipeline")
```
Why use DataFrames for ML?

• Provide a uniform API across multiple languages
 – Java, Scala, Python,
 – R not so similar API

• More user-friendly than RDDs.
 – Convenient for users who have used dataframes in other languages

• Tabular format is natural for feature selection and manipulation

• Spark Data sources streamline data importing (CSV, JSON, Kafka streams)

• Tungsten and Catalyst optimizers can take advantage of stricter tabular data schemas
 – **Catalyst**: SQL query-to-code optimizer (Logical and Physical plans)
 – **Tungsten**: Off-Heap Memory Management, cache-aware computations, whole-stage code generation/merging