
Report on PIR with Low Storage Overhead

Ehsan Ebrahimi Targhi

University of Tartu

December 15, 2015

Abstract

Private information retrieval (PIR) protocol, introduced in 1995 by Chor, Goldreich,
Kushilevitz and Sudan, allows a user to retrieve a data item from a database without re-
vealing which item is retrieved. Two main parameters of a PIR protocol are communication
complexity, which is the total number of bits communicated between the user and the
servers, and storage overhead, which is the ratio between the total number of bits stored on
all the servers and the number of bits in the database. This report is based on the paper
by Fazeli, Vardy and Yaakobi that is focused on the trade-off between these parameters in
the information-theoretic setting. They showed that the storage overhead of a k-server PIR
protocol can be arbitrarily close to the optimal value of 1 without sacrificing its commu-
nication complexity. They reduced the storage overhead parameter using coding technique
instead of replication.

1 Introduction

The notion of information-theoretic private information retrieval was first introduced in [CGKS95].
It is possible to retrieve a data item from a database without leaking any information about the
item being retrieved. A naive solution for the user is to download the entire database. In the
case of a single database stored in a single server, it is shown in [CKGS98] that this solution
is the best possible answer. However, it has a very high communication cost, Ω(n), where n is
the length of the database in bits. A sublinear communication complexity is possible by repli-
cating the database on several servers that do not communicate with each other ([CKGS98],
[AFK97],[IK02]). Using the replication, the communication cost has been reduced by a subpoly-
nomial factor in recent works ([Yek08], [Efr12], [DG15]). However, replication of the database on
several servers increases the storage overhead of a PIR protocol. Clearly, the storage overhead
of the mentioned protocols is at least 2.

In order not to increase the storage overhead, a private information retrieval protocol in
the computational setting was studied by Kushilevitz and Ostrovsky [KO97] that avoids the
replication. In the computational setting, the identity of data item is only computationally
hidden from the databases. Subsequently, such PIR protocols have been studied in several works
and based on different computational assumptions ([Gas04]). This report is based on the paper
by Fazeli, Vardy and Yaakobi [FVY15] that achieves a low storage overhead in the information-
theoretic setting. It is shown that the storage overhead of a k-server PIR protocol can be
arbitrarily close to the optimal value of 1 without sacrificing its communication complexity.

In what follows, we present an overview of their coding technique. The technique to reduce
the storage overhead has two main ingredients. First, the existence of a k-server PIR protocol
in which the servers responses are a linear function of the database bits. Second, a binary linear
code with the property that for every message bit xi there are k disjoint sets of coded bits from
which the message xi can be recovered. Suppose the generator matrix for this code is Gs×m and

1



there are m := s + r servers. Next, they partition the database into s blocks, say X1, · · · , Xs.
The j-th server stores n/s bits cj that is the result of applying the generator matrix Gs×m to
the s partitions X1, · · · , Xs (or (c1, · · · , cm) = (X1, · · · , Xs) ·Gs×m). It is clear that the storage
overhead is (s + r)/s and it approaches 1 when s grows. Every k-server PIR protocol consists
of three algorithms (Q,A,C) where algorithm Q determines k queries, algorithm A determines
servers’ responses to the user’s queries and finally algorithm C that based on servers’ answers
output the bit xi that user is interested in. Therefore, the existence of a k-server PIR protocol
guarantees an algorithm Q to produce k queries for the user, called Alice, and algorithm A that
determines the servers’ answers to those queries. For simplicity, suppose Alice is interested in
the i-th bit that belongs to the first block X1. Alice invokes algorithm Q(k, n; i) to produce
(q1, · · · , qk) queries. She needs answers A(k, 1, X1, q1), A(k, 2, X1, q2), · · · , A(k, k,X1, qk) from k
servers to recover the i-th bit. However, servers stores the coded information c1, · · · , cm. Recall
that there are k disjoint subset of coded bits c1, . . . , cm such that Alice can recover the block
message X1 from them. Lets call these sets R1, · · · , Rk. Next, Alice sends the same query
qi to every server that stores a codeword that belongs to the set Ri and arbitrary queries to
the remaining servers. Linearity of servers’ responses over database guarantees that Alice can
obtain A(k, j,X1, qj) for every j ∈ [k] (Notation [k] denotes set {1, 2, . . . , k} ). The same pro-
cedure follows when i-th bit belongs to the blockXj . We explain these ideas in the next example.

Example: Suppose two servers S1 and S2 store a database X ∈ {0, 1}n and Alice wants
to retrieve bit xi without revealing any information about index i. Alice chooses uniformly at
random a ∈ {0, 1}n and sends a and a+ ei to S1 and S2 respectively where ei is a binary vector
of length n with single 1 in position i. Note that the distribution of Alice’s queries are the
same and since servers do not communicate with each other, they are not able to obtain any
information about the index i. Servers respond with inner product of Alice’s query and the
database X. In other words, S1 and S2 answer with bits X · a and (a + ei) · X respectively.
Next, Alice can recover bit xi by adding (over a binary field) servers’ answers:

xi = a ·X + a ·X + ei ·X = a ·X + (a+ ei) ·X

Now, assume that the database X is partitioned into two equal parts X1 and X2 and there
are 3 servers S1, S2 and S3. Servers S1, S2 and S3 store X1, X2 and X1 + X2, respectively.
Assume Alice wants to retrieve the i-th bit where i ∈ [n/2]. She chooses uniformly at random
a ∈ {0, 1}n/2 and sends vector a, a + ei and a + ei to servers S1, S2 and S3 respectively. Since
a is chosen uniformly at random and servers do not communicate, the privacy of the scheme is
preserved. Each server responds with inner product of Alice’s query and the coded information
that the server stores. Alice can recover the bit xi by adding the answers:

xi = a ·X1 + a ·X1 + ei ·X1 = a ·X1 + (a+ ei) ·X1 = a ·X1 + (a+ ei) ·X2 + (a+ ei) · (X1 +X2).

In the case where Alice wants to retrieve the bit xi from the second half of database, she sends
a + ei, a and a + ei to S1, S2 and S3 respectively. A similar argument shows that Alice can
retrieve xi without revealing any information about the index i.

It is clear that the communication complexity and the storage overhead of first protocol are
2n+ 2 and 2 respectively, while in coded scheme the communication complexity and the storage
overhead are 3(n/2) + 3 and 3/2 respectively.

2 Coded PIR scheme

In this section, we formally define a k-server PIR protocol, an (m, s)-server coded PIR protocol
and a k-server PIR code.
A k-server PIR scheme consists of k servers S1, . . . , Sk in which every server stores a database

2



X of length n and a user U who wants to retrieve bit xi from database without revealing the
index i.

Definition 1. A k-server PIR protocol is a triple of algorithms P = (Q,A,C) such that:

• Algorithm Q is a probabilistic algorithm that on input (k, n; i) outputs queries (q1, . . . , qk).
Let qj := Qj(k, n; i). User sends query qj to the server Sj.

• Server Sk runs algorithm A on input (k, j, x, qj) and outputs answer aj.

• User invokes Algorithm C on input (k, n; i, a1, . . . , ak) to obtain an output bit.

Properties:

• Privacy: Every server can not learn any information about the index i. More formally,
the distribution Qj(k, n; i1) and Qj(k, n; i2) are identical for any k, n, and i1, i2 ∈ [n], and
a server j ∈ [n].

• Correctness: C(k, n; i, a1, . . . , ak) = xi for every k, n and i ∈ [n] and database X ∈ {0, 1}n.

Definition 2. A k-server PIR protocol P = (Q,A,C) is called a linear PIR protocol if the
output of Algorithm A is a linear function of the database bits. More formally, for every n,
j ∈ [k], database X1, X2 of length n, and query qj:

A(k, j,X1 +X2, qj) = A(k, j,X1, qj) +A(k, j,X2, qj).

In what follows, we define an (m, s)-server coded PIR scheme. Note that the main two
differences to the last definition are as follows. First, the database is partitioned into s parts
X1, . . . , Xs. Second, a function of X1, . . . , Xs is stored in the servers and consequently every
server stores n/s bits.

Definition 3. An (m, s)-server coded PIR scheme consists of:

• A database X ∈ {0, 1}n that partitions to s parts X1, . . . , Xs, each of length n/s.

• m servers S1, . . . , Sm in which j-th server stores a coded information cj that is a function
of X1, . . . , Xs.

• user U who wants to retrieve the bit xi from the database X without revealing index i.

An (m, s)-server coded PIR protocol consists of three algorithms P ∗ = (Q∗, A∗, C∗) such that:

• Algorithm Q∗ is a probabilistic algorithm that on input (m, s, n; i) outputs queries (q1, . . . , qm).
Let qj = Q∗j (k, n; i). User sends query qj to the server Sk.

• Server Sk runs algorithm A∗ on input (m, s, j, cj , qj) and outputs answer a∗j .

• User invokes Algorithm C on input (m, s, n; i, a∗1, . . . , a
∗
k).

Properties:
Privacy and correctness as stated in Definition 1.

Definition 4. we say that a binary matrix Gs×m has property Ak if for every i ∈ [s], there exist
k disjoint subsets of columns of G whose sum is a binary vector of single 1 in position i. A
binary linear [m, s] code C will be called a k-server PIR code if there exist a generator matrix G
for C with property Ak. In other words, if c = uG is the encoding of message u ∈ {0, 1}s where
G has property Ak, then there exist k disjoint sets R1, . . . , Rk ⊆ [m] such that:

ui =
∑
j∈R1

cj = · · · =
∑
j∈Rk

cj .

3



Example: The following matrix has property A3:

G =


1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1


Now, assume there exists a 3-server linear PIR protocol P = (Q,A,C) and a length-n database.
Suppose that each server can store at most n/4 bits. If one wants to invoke the 3-server PIR
protocol P , then the database has to be partitioned into 4 parts X1, X2, X3, X4 and each part
has to be stored in three different servers. Therefore, the total number of servers needed is
12 servers and the storage overhead of the protocol is 3. In order to decrease the storage
overhead, we use the matrixG that has A3 property to construct (8,4)-server coded PIR protocol
P ∗ = (Q∗, A∗, C∗). We calculate the coded information c = (c1, c2, . . . , c8) using the generator
matrix G:

(c1, c2, . . . , c8) = (X1, X2, X3, X4)


1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1


Therefore,

c =
(
X1, X2, X3, X4, X1 +X2, X2 +X3, X3 +X4, X1 +X4

)
We need 8 servers to store the coded information and j-th server stores the coded information
cj for j ∈ [8]. Suppose Alice wants to retrieve the i-th bit xi where i ∈ [n/4]. It means this bit
belongs to the first part of the database. She invokes the algorithm Q to get three queries:

Q(3, n/4; i) = (q1, q2, q3).

Since bit xi belongs to the database X1, if Alice manages to receive answers a1 = A(3, 1, X1, q1),
a2 = A(3, 2, X1, q2) and a3 = A(3, 3, X1, q3) from the servers, then she can invoke the algorithm
C(3, n/4; i, a1, a2, a3) to retrieve the bit xi. Therefore, Alice has to come up with the algorithm
Q∗ to produce 8 clever queries based on q1, q2, q3. Since the first server stores X1, if Alice submits
q1 to the first server, she would receive the answer a1 = A(3, 1, X1, q1). Note that the matrix
G has property A3 therefore c1 = X1, c2 + c5 = X1 and c4 + c8 = X1. Now, if Alice sends the
query q2 to the second and fifth server, she receives a′2 = A(3, 2, c2, q2) and a′5 = A(3, 2, c5, q2)
and since the servers’ responses are linear over database, she calculates a2 = A(3, 2, X1, q2) as
follows:

A(3, 2, c2, q2) +A(3, 2, c5, q2) = A(3, 2, c2 + c5, q2) = A(3, 2, X1, q2) = a2.

In order to obtain answer a3, Alice sends query q3 to the 4-th server and 8-th server. As above, by
linearity of servers’ answers and A3 property of matrix G Alice can compute a3 = A(3, 3, X1, q3).
To sum up:

Q∗(8, 4, n; i) = (q1, q2, anything, q3, q2, anything, anything, q3).

Finally, Alice invokes algorithm C on input (3, n/4; i, a1, a2, a3) to retrieve the bit xi.

The same procedure follows if the bit xi that Alice wants to retrieve belongs to the other
parts of database. For example suppose Alice wants to retrieve a bit from X2. It is clear that the
3 disjoint set {c2}, {c1, c5} and {c3, c6} can recover X2 and consequently algorithm Q∗(8, 4, n; i)
can return queries as follows:

Q∗(8, 4, n; i) = (q1, q2, q3, anything, q1, q3, anything, anything).

4



The queries that have not been specified can be assigned in a way to preserve the privacy of
the protocol. Since the queries to the servers may differ depending on the part of database from
which Alice wants to retrieve the bit, every server returns all possible outputs as follows:

A∗(8, 4, 1, X1, q1) = (A(3, 1, X1, q1), A(3, 2, X1, q1), A(3, 3, X1, q1)).

Another solution to the privacy problem stated above which improves the download com-
plexity is as follows. Alice chooses a random permutation and applies to the index of queries
received from the algorithm Q and then does the same procedure as explained in the example.
More formal analysis is given in the proof of Theorem 5 in [FVY15].

Theorem 1. If there exist an [m, s] k-server PIR code C and a k-server linear PIR protocol P
then there exist an (m,s)-server coded PIR protocol P∗. Furthermore,

U∗(P∗;n,m, s) = m · U(P;n/s, k),

D∗(P∗;n,m, s) = m ·D(P;n/s, k),

where U and D are the number of bits uploaded and downloaded respectively.

Proof. Refer to [FVY15, Theorem 5].

Since almost all known PIR schemes have linearity property as stated in Definition 2, we
focus on the construction of PIR codes in the next section. For given s and k, let A(s, k) be the
optimal value of m such that an [m, s] k-server PIR code exists.

3 The k-server PIR code

In this section, we present three constructions of k-server PIR codes. A k-server PIR code is
one of the main ingredients of an (m, s)-server PIR code.

3.1 The Cubic Construction

We present a construction of coded PIR scheme based on geometry of multidimensional cubes.
We construct an [m, s] k-server PIR code where s = σk−1 and m = σk−1 + (k− 1)σk−2 for some
positive integer σ. This code will be denoted by CA(σ, k). We demonstrate the construction of
the code CA(4, 3) in the next example.

Example: Assume k = 3 and σ = 4. The code CA(4, 3) is the following square array of size
(σ + 1)× (σ + 1), without a bit in the bottom right corner.

x1,1 x1,2 x1,3 x1,4 p
(1)
1

x2,1 x2,2 x2,3 x2,4 p
(1)
2

x3,1 x3,2 x3,3 x3,4 p
(1)
3

x4,1 x4,2 x4,3 x4,4 p
(1)
4

p
(2)
1 p

(2)
2 p

(2)
3 p

(2)
4

The information bits are denoted by xi,j for i, j ∈ [4]. The remaining bits are redundancy bits
and for i ∈ [4] they are defined as follows:

p
(1)
i =

σ∑
j=1

xi,j ,

5



p
(2)
i =

σ∑
j=1

xj,i.

For every information bit xi,j , there are three mutually disjoint sets such that xi,j is a linear
function of the bits in each set. For example for information bit x1,1, three mutually dis-
joint sets that are used to recover information bit x1,1 are {x1,1}, {x1,2, x1,3, x1,4, p(1)1 } and
{x2,1, x3,1, x4,1, p(2)1 }.

Theorem 2. For two positive integer σ and k, the coded C(σ, k) is a k-server PIR code. In
particular, we get for any positive s

A(s, k) ≤ s+ (k − 1)ds
1

k−1 ek−2.

Proof. Refer to [FVY15, Theorem 6].

Therefore, the asymptotic behavior of the storage overhead in the cubic construction ap-
proaches 1, that is,

lim
s→∞

A(s, k)

s
= 1.

3.2 One-step Majority Logic Codes

Let Gs×m = [Is|Ps×(m−s)] be a systematic generator matrix for the code C. The parity-check
matrix for the code C is [P>|Im−s] that generates the dual code C⊥. Now, assume that for every
i ∈ [n], there exist J codewords hi1 , . . . , hiJ in the dual code that (mutually) intersect only on
the i-th bit. The code with this property is called one-step majority code with J orthogonal
vectors. This property guarantees that for every bit in the codeword c = (c1, c2, . . . , cm), there
exist J mutually disjoint set R1, . . . , Rj ⊆ [m] such that ci =

∑
k∈R1

ck = · · · =
∑

k∈RJ ck.
These equation can be obtained since hi1 · c = · · · = hiJ · c = 0 and the sets R1, . . . , Rj ⊆ [m]
are mutually disjoint since codewords hi1 , . . . , hiJ mutually intersect only on the i-th bit. Next
example explain how one can obtain those mutually disjoint sets. For the reason that every
information bit ui for i ∈ [s] is i-th bit in the codeword, any one-step majority logic code fits to
the definition of (J + 1)-server PIR code.

Example: Consider a (15, 7) cyclic code generated by polynomial

g(x) = 1 + x4 + x6 + x7 + x8.

The following codewords in C⊥

h1 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0),

h2 = (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1),

h3 = (1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

h4 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0),

mutually intersect only on the first bit. We use these codewords to obtain 5 mutually disjoint
sets such that information bit u1 can recover from them. Let c = (u1, . . . , u8, c9, . . . , c15) ∈ C.
Using equation h1 · c> = 0 we would get u1 = u4 + c13 + c14. This gives us the set {4, 13, 14}
and similarly we can obtain sets {3, 7, 15}, {2, 4, 8} and {9, 10, 12} using other codewords. In
addition, the set {1} is used to recover information bit u1.

An interested reader can refer to [FVY15, Theorem 9] to read about a detailed example of
one-step majority codes.

6



3.3 Constant-Weight Code

If we look at the systematic PIR code from graph theory point of view, it will motivate us to
look at constant-weight codes. Let [Is|Ms×r] be generator matrix of a k-server PIR code C of
length m = s+ r and dimension s. Suppose M is an incident matrix for bipartite graph G with
the vertex sets X = {x1, . . . , xs} and P = {p1, . . . , pr}, and edge set E = {{xi, pj}|Mi,j = 1}.
The following lemma shows connection between a bipartite graph and a k-server PIR code.

Lemma 3. Let G be a bipartite graph with parties set X = {x1, . . . , xs} and P = {p1, . . . , pr}
and incidence matrix M. Assume minx∈X deg(x) = k − 1 and G has no cycles of length 4. If
C is a systematic code with generator matrix [Is|Ms×r], then C is a k-server PIR code of length
m = s+ r and dimension s.

Proof. Let x = (x1, . . . , xs) be an information vector. For every information bit xi, we prove
that there exist k mutually disjoint subsets of [m] such that one can recover information bit xi
using each set and codeword xG = (x1, . . . , xs, p1, . . . , pr) where p1, . . . , pr are redundancy bits.
Let {pi1 , pi2 , · · · , pik−1

} be set of k − 1 neighbors of xi and N (pij ) be set of all neighbors of pij .
Since G is 4-cycle free, then N (pij )

⋂
N (pij′ ) = {xi} for every j 6= j′ ∈ [k − 1]. Therefore the

sets N (pij )\{xi} (for j ∈ [k − 1]) are mutually disjoint and we can recover information bit xi
using each set as follows:

xi = pij +
∑

xα∈N (pij )\{xi}

xα.

As a result, the sets {xi}, and N (pij )\{xi} for j ∈ [k − 1] forms k disjoint recovery sets for
information bit xi.

Now, if we suppose the requirement deg(x) = k − 1 for every x ∈ X , then we can look
at constant-weight codes where the codewords are all rows in the matrix M . An interested
reader can refer to [FVY15, Theorem 11] to analyse an example of constant-weight code and its
parameters.

References

[AFK97] Andris Ambainis, Rusins Freivalds, and Marek Karpinski. Weak and strong recog-
nition by 2-way randomized automata. In Randomization and Approximation Tech-
niques in Computer Science, International Workshop, RANDOM’97, Bolognna, Italy,
July 11-12. 1997, Proceedings, pages 175–185, 1997.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private infor-
mation retrieval. In 36th Annual Symposium on Foundations of Computer Science,
Milwaukee, Wisconsin, 23-25 October 1995, pages 41–50, 1995.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private informa-
tion retrieval. J. ACM, 45(6):965–981, 1998.

[DG15] Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-polynomial communication.
In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 577–584, 2015.

[Efr12] Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM
J. Comput., 41(6):1694–1703, 2012.

[FVY15] Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. PIR with low storage overhead:
Coding instead of replication. CoRR, abs/1505.06241, 2015.

7



[Gas04] William I. Gasarch. A survey on private information retrieval (column: Computa-
tional complexity). Bulletin of the EATCS, 82:72–107, 2004.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Automata, Languages and Programming, 29th
International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings,
pages 244–256, 2002.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In 38th Annual Symposium
on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, Oc-
tober 19-22, 1997, pages 364–373, 1997.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length.
J. ACM, 55(1), 2008.

8


	Introduction
	Coded PIR scheme
	The k-server PIR code
	The Cubic Construction
	One-step Majority Logic Codes
	Constant-Weight Code


