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1 Introduction

This report summarizes the results of [12] by Ristenpart, Shacham and Shrimp-
ton. They show that the indifferentiability composition theorem by Maurer,
Renner and Holenstein [10] is often misinterpreted and used incorrectly result-
ing in insecure cryptographic constructions.

2 Preliminaries

2.1 Ideal primitive

Ideal primitive is defined as an algorithmic entity which receives inputs from
on of the parties and immediately delivers its output to the querying party [6].
Examples of ideal primitives include the random oracle and the ideal cipher.

2.2 Random oracle model

Random oracle model (ROM) is an idealized model, where all participating
parties have access to a public random oracle. This oracle answers all queries,
specified by a key, by generating and outputting a truly random value from
its output domain. Whenever a query with the same key is repeated, it an-
swers with the same value. Pseudocode for such random oracle is shown in
Figure 1(above). The random oracle model was introduced by Bellare and Ro-
gaway [4] to connect cryptographic theory and practice. As a result, a lot of
practical, in-use cryptographic schemes are proven secure in ROM and for many
of them, ROM proofs are the only ones known.

2.3 Notation

When a value is uniformly randomly sampled from a finite non-empty set X ,

we denote it as x
$← X , where x is the variable that is assigned the random
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procedure RO.hon(x) if T [x] = ⊥ then

T [x]
$← {0, 1}r

Return T [x]

procedure RO.adv(x)[
Return RO.hon(x)

procedure IP.hon(x)[
Return HP.hon(x)

procedure IP.adv(x)[
Return P.adv(x)

Figure 1: Procedures implementing the functionality of the random oracle model
(above) and the ideal primitive model (below). The number r is set by the
context.

value. However, if A is an algorithm, x
$← A denotes that x is assigned a value

according to the distribution induced by A.
For describing cryptographic games, we use a version of the code-based

games framework introduced by Bellare and Rogaway [5]. A procedure is a
sequence of statements with zero or more inputs and zero or more outputs. An
unspecified procedure is a procedure whose statements, inputs and outputs are
understood from the context. This is generally used for adversarial procedures.
A procedure can itself also call other procedures. If a procedure P expects to
call k other procedures, we denote it as PQ1,...,Qk to show that the called pro-
cedures are handled by Q1 through Qk. In such case, we assume that there
are no syntactic mismatches between the calls and all the necessary inputs and
outputs correspond to each other. Also, all procedures are assumed to halt and
for simplicity, we say that each statement runs in unit time.

Variables are by default local and maintain their state between the calls of
the procedure. Collections of procedures, denoted P = (P.x, P.y), share their
variables and the suffixes x and y (in this case) are called interfaces of P .
Procedures are said to export the same interface if they agree on number and
types for inputs and outputs.

Procedure main is a special procedure that has no inputs and has some
output. It cannot be called by other procedures and it can access all variables
of other specified procedures.

A functionality F is a collection of procedures, usually with honest and
adversarial interfaces: F = (F.hon, F.adv). For example, we give two function-
alities showing two computation models on Figure 1. RO = (RO.hon,RO.adv)
implements random oracle and IP = (IP.hon, IP.adv) shows an (ideal) primitive
model. In the latter case let P = (P.hon, P.adv) implement some ideal primitive
that underlies some construction H.

A game G is denoted by “main G”. It can make a use of a functionality
F and any number of adversarial procedures A1, . . . ,Am (together referred as

2



adversary), denoted by GF,A1,...,Am . Running a game means sequentially exe-
cuting all statements in its main procedure and the output of game G is the
value returned by its main procedure. We denote by GF,A1,...,Am ⇒ y a situa-
tion when game G outputs value y. Finally, for any fixed functionality F and
adversary A1, . . . ,Am we say that games G and H are equivalent if

Pr
[
GF,A1,...,Am ⇒ y

]
= Pr

[
HF,A1,...,Am ⇒ y

]
for all values y.

2.4 Single and multi-stage games

In the following we will consider games where only adversarial procedures call
F.adv, i.e. it is not called by the main or any other specified procedure of the
game. Then we say that a game is single-stage game if it uses only a single
adversarial procedure. Games that use more then one adversarial procedures
are called multi-stage.

3 The Indifferentiability Framework

3.1 Indifferentiability

Let us fix two functionalities F1 and F2, for example, standing for (some) ideal
primitive and random oracle, respectively. As usual we have to environments –
Real and Ideal (see Figure 2) – and an adversary that tries to guess in which
environment we currently are. In this case we call the adversary a distinguisher
D. The indifferentiability advantage of the distinguisher D is defined as

Advindiff
F1,F2,S = Pr

[
RealF1,D ⇒ y

]
− Pr

[
IdealF2,D

S ⇒ y
]
,

where S is a simulator and y is an arbitrary fixed value.

Definition 1. F1 is indifferentiable from F2 if there exists a polynomial-time
simulator S such that for any polynomial-time D the advantage Advindiff is neg-
ligible in the security parameter.

In the context of this paper the goal of indifferentiability is to allow translat-
ing security analysis of a cryptographic scheme from one model of computation
to another to be easily accomplished. The following theorem from [10] (and
reiterated in [12]) enables this.

Theorem 1. Let G be a game expecting access to a functionality and a single
adversarial procedure. Let F1, F2 be two functionalities with compatible honest
interfaces. Let A be an adversary with one oracle. Let S be a simulator that
exports the same interface as F1.adv. Then there exists an adversary B and a
distinguisher D such that for all values y

Pr
[
GF1,A ⇒ y

]
≤ Pr

[
GF2,B ⇒ y

]
+ Advindiff

F1,F2,S(D).
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main Real[
b′

$← DFunc,Prim

Return b′

procedure Func(m)[
Return F1.hon(m)

procedure Prim(u)[
Return F1.adv(u)

main IdealS[
b′

$← DFunc,Prim

Return b′

procedure Func(m)[
Return F2.hon(m)

procedure Prim(u)[
Return SF2.adv(u)

Figure 2: Games defining indifferentiability. Adversary D and functionalities
F1 and F2 are unspecified. S is a simulator of the game.

Moreover: tB ≤ tA + qA · tS , qB ≤ qA · qS , tD ≤ tG + qG,1 · tA and qD ≤
qG,0 + qG,1 · qA, where tA, tB, tD are the running times of A,B,D; qA, qB are
the maximum number of queries made by A and B in a single execution; and
qG,0, qG,1 are the maximum number of queries made by G to the honest and to
the adversarial procedures, respectively.

Proof. Fix any value y. Let F = (F.hon, F.adv) be some unspecified functional-
ity that exports the same interface as (F1.hon, F2.adv). Let the indifferentiabil-
ity adversary D be defined as follows. Adversary D runs game G and whenever
G calls its honest interface, adversary D queries F.hon and returns the result.
Whenever G calls A, adversary D runs A for G using F.adv to answer any
queries made by A. At the end D outputs whatever G outputs. Then in the
case that F = F1 we get

Pr
[
RealD ⇒ y

]
= Pr

[
GF1,A ⇒ y

]
; (1)

qD ≤ qG,0 + qG,1 · qA and tD ≤ tG + qG,1 · tA. Now let’s define adversary B for
F = F2. Adversary B runs A and whenever A queries its oracle, adversary B
runs S using its F2.adv oracle to answer any queries that S makes. Adversary
B outputs whatever A outputs. By construction we get

Pr
[
IdealDS ⇒ y

]
= Pr

[
GF2,AS ⇒ y

]
= Pr

[
GF2,B ⇒ y

]
, (2)

with qB ≤ qA · qS and tB ≤ tA + qA · tS . By substituting equations 1 and 2 into
the definition of indifferentiability advantage we derive the advantage relation
of the theorem.

Theorem 1 explicitly considers only single-stage games. However, it seems
that this is taken as an artificial restriction and recently, the theorem has been
used to “prove” that many cryptographic constructions are indifferentiable from
ROM. It is taken for granted that a game G with access to a single adversarial
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main CRPF,A1,A2
p,n,s

M
$← {0, 1}p

st
$← AF.adv

1 (M)

if |st| > n then Return false

C
$← {0, 1}s

Z
$← AF.adv

2 (st, C)

Return [Z = F.hon(M ‖ C)]

Figure 3: Game showing the challenge-response hash function property.

procedure A used in the theorem could be easily substituted with another game
that requires access to multiple adversarial procedures A1, . . . ,Am by simply
replacing the adversary B with a set of adversaries B1, . . . ,Bm such that Bi = AS

i

for i = 1..m. However, on a closer look it comes out that the proof of Theorem 1
would actually fail in this case as the simulator S cannot maintain its state
between the m invocations and thus the analogue of equation 2 does not hold:

Pr
[
GF2,B1,...,Bm ⇒ y

]
= Pr

[
GF2,AS1 ,...,ASm ⇒ y

]
6= Pr

[
IdealDS ⇒ y

]
4 Indifferentiability Fails for Multi-Stage Games

4.1 Practically motivated counterexample

To demonstrate how Theorem 1 fails for multi-stage games, the authors of [12]
give a rather simple counterexample. Later, they go on by generalizing this to
all multi-stage games.

The counterexample is motivated by the growing popularity of cloud-based
storage. The question is how a client can be sure that his or her file is really
stored by the cloud (or any other server for that matter) [1, 8]? A malicious
server could just delete the file received from the user to save its disk space. The
example presented in this paper is inspired by the proof-of-storage challenge-
response protocol proposed by a system called SafeStore [9]. The protocol,
called CRP, is explained in the following and also given as a game in Figure 3.

Let M be a message (file) that the client wants to store this on a server.
The client can check if the server has stored the message by sending it a random
challenge C to which the server is supposed to answer with H(M ‖ C), where H
is a hash function. The client can then compare server’s response with the hash
value computed from the local copy of the message. If H is a random oracle
then there is no way the server can cheat other that guessing the challenge C
in advance.
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Next, we will show how such construction fails if H is built from an ideal
primitive. For that, we will first define a new property of hash functions, called
online computability :

Definition 2. Consider a hash function Hf : {0, 1}∗ → {0, 1}r using some
underlying primitive f . Then we say that Hf is (p, n, s)-online computable

if for p, n, s > 0 there exists functions Hf
1 : {0, 1}p → {0, 1}n and Hf

2 :

{0, 1}n × {0, 1}s → {0, 1}r such that Hf (M1 ‖ M2) = Hf
2 (Hf

1 (M1),M2) for
any (M1,M2) ∈ {0, 1}p×{0, 1}s. Moreover, it is required that the time to com-

pute Hf
1 and Hf

2 is within a small, absolute constant of the time to compute
Hf .

In other words, what online computability means is that the hash function
can be computed in two stages, processing M1 and M2 sequentially. Let us
construct the counterexample by using a hash function construction that is
proven to be indifferentiable from RO in [6]. Assume that both the message M
and challenge C in CRP game are d bits long (p, s = d) and hash function is Hf ,
where f is an ideal compression function that outputs n-bit strings, such that
n < d. By construction, H returns the first r = n/2 bits of f(f(IV,M), C),
where IV is an initialization vector (constant string). It is easy to see that
the adversary always wins the CRP game shown on Figure 3 if A1 outputs
st = Hf

1 (M) = f(IV,M) and A2 outputs Hf
2 (st, C) = f(st, C). Simply put,

the storage server can just store the (smaller) hash of the message and discard
the message M itself, while still being able to answer future challenge queries
successfully.

Most iterative hash function constructions are in fact online computable,
including HMAC and NMAC constructions [6], EMD [3], MDP [7] and many
SHA-3 competition candidates. None of these or any other (p, n, s)-online com-
putable hash function constructions can be used in the CRP game.

4.2 Indifferentiability fails for all multi-stage games

Following the example of the CRP game, we will now show how indifferentia-
bility does not imply security for any multi-stage game. We will show how any
ideal primitive can be augmented to include a storage interface, such that all of
the indifferentiability related results stay unaffected. The interface itself allows
an adversary to save key-value pairs and retrieve values by key. Formally, let
F1 be a functionality and St be a procedure that exposes hash table T . That
is, on input (X,Y ) it sets T [X]← Y and returns nothing; and on input (X,⊥)
it returns T [X] if it is set and ⊥ otherwise. Now, the storage-augmented func-
tionality F ∗1 = (F1.hon, F

∗
1 .adv) has the same honest interface as F1 but the

adversarial interface additionally exposes St: F ∗1 .adv = (F1.adv, St).
The following theorem states that if functionality F1 is indifferentiable from

some functionality F2 then F ∗1 is also indifferentiable from F2.

Theorem 2. Let F1, F2 be functionalities and F ∗1 be the storage-augmented
version of F1. Let SB be a simulator. Then there exists a simulator SAsuch
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main CDAF,A1,A2

PKE

b
$← {0, 1}

(pk, sk)
$← K

(m0,m1, r)
$← AF.adv

1

c← EF.hon(pk,mb; r)

b′
$← AF.adv

2 (pk, c)

Return [b = b′]

Figure 4: The non-adaptive CDA game.

that for all distinguishers A there exists a distinguisher B such that

Advindiff
F∗1 ,F2,SA(A) = Advindiff

F1,F2,SB(B).

B runs in the time that of A and uses the same number of queries; SA runs in
the time that of SB plus a small constant and uses the same number of queries.

The proof of this theorem is omitted here and available in the full version of
the original paper [11]. The rationale behind the theorem is that distinguishers
in indifferentiability maintain their state throughout the game and it does not
matter if they store it locally or export it to an oracle as is the case with storage-
augmented functionalities. However, the ability to use storage oracle breaks
security for many multi-stage games, for example chosen-distribution attack for
public-key cryptography, non-malleable hashing, password-based cryptography,
key-dependent message security and related-key attack. Full version of the
original paper [11] gives adversary constructions for all of the mentioned security
goals. Here, we will briefly describe how resistance against chosen-distribution
attack (CDA) of public-key encryption (PKE) is not achievable in the storage-
augmented primitive model.

Chosen-distribution attack security [2] captures the security of a PKE scheme
when the randomness r may not be a (sufficiently long) string of uniform bits.
Figure 4 shows the non-adaptive CDA game, where K is a key generation algo-
rithm and E is a encryption algorithm of a PKE scheme. It is easy to see that if
we replace the functionality F with its storage-augmented counterpart F ∗ then
the adversary should play as follows: A1 picks (m0,m1, r) randomly as in F but
also queries St(0, (m0,m1, r)). Later A2 queries St(0,⊥) to retrieve the same
triple, encrypts both messages m0 and m1 under r, compares both ciphertexts
with the challenge and outputs the correct bit. Such adversary always wins.
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5 Reset Indifferentiability

After showing that indifferentiability as stated in [10] fails for all multi-stage
games, the authors of [12] continue by introducing a stronger notion called reset
indifferentiability that also takes into account multi-stage games.

Reset indifferentiability uses simulator resets where the state of simulator is
reset to its initial value in the beginning of each stage. In this case the simulator

is expressed as a pair of procedures
x
S = (

x
S .S,

x
S .Rst), where

x
S .S is the same as

original S and
x
S .Rst is a procedure that reinitializes all internal variables of

x
S .S

to their initial values. Similarly, we have a new notation for functionality ~F =
(~F .hon, ~F .adv) = (F.hon, (F.adv, nop)), where nop is a special “no operation”
functionality that takes no input and does nothing. Depending on the context,

either
x
S .Rst and nop operation is called by Prim procedure shown on Figure 2.

Let F1 and F2 be functionalities, D an adversary (the distinguisher) that outputs
a bit and S a simulator. Then we define the reset indifferentiability advantage
of D as

Advreset−indiff
F1,F2,S = Pr

[
Real

~F1,D ⇒ y
]
− Pr

[
Ideal

~F2,D
x
S

⇒ y
]
,

where y is an arbitrary fixed value.
The following theorem is an analogue of Theorem 1 that uses reset indiffer-

entiability.

Theorem 3. Let G be a game and let F1, F2 be two functionalities. Let
A1, . . . ,Am be an adversary and let SF2.adv be a simulator that exports the
same interface as F1.adv. Then there exists an adversary B1, . . . ,Bm and a
distinguisher D such that for all values y

Pr
[
GF1,A1,...,Am ⇒ y

]
≤ Pr

[
GF2,B1,...,Bm ⇒ y

]
+ Advreset−indiff

F1,F2,S (D).

Moreover: tBi
≤ tAi

+ qAi
· tS , qBi

≤ qAi
· qS , tD ≤ m+ tG +

∑m
i=1 qG,i · tAi

and
qD ≤ qG,0 +

∑m
i=1 qG,i · qAi , where tA, tB, tD are the maximum running times

of A,B,D; qA, qB are the maximum number of queries made by A and B in a
single execution; and qG,0, qG,i are the maximum number of queries made by G
to the honest interface and the ith adversarial procedure, respectively.

The proof of this theorem is the same as for Theorem 1 with small variations
to count for adversary with multiple procedures. First, as separate instance of S
has to be used for each procedure Bi: BF2.adv

i = ASF2.adv

i (1 ≤ i ≤ m). Secondly,
define distinguisher D by modifying DF.hon,F.adv = GF,A1,...,Am so that each Ai

call is immediately preceded by a reset call.

5.1 Practical implications

Using reset indifferentiability is in general the same as using (conventional) in-
differentiability with stateless and deterministic simulator as in this case the
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simulator’s behavior is not affected by resets. Keeping that in mind, it is ques-
tionable if the stringer reset indifferentiability can be achieved for any non-trivial
constructions. Moreover, in [12] a large class of efficient hash constructions is
shown to not achieve the reset indifferentiability property.

6 Conclusion

The authors of [12] draw attention to a fact that the main theorem in [10] is
in many cases loosely interpreted resulting in cryptographic protocol “proofs”
where the theorem is in fact not applicable. The authors show that the theorem
works only for single-stage games and fails for all multi-stage games. They go
on by introducing a stronger notion of indifferentiability, called reset indiffer-
entiability, and an analogue of the theorem in question that takes into account
multi-stage games. Unfortunately, a large class of efficient hash functions turns
out to be not reset indifferentiable, leaving the existence of any non-trivial reset
indifferentiable constructions in question.
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