
Computationally efficient mix-nets

Ivo Kubjas

1 Introduction

The current online voting system used in Estonia has not employed mathematically secure
verifiable proofs of correctness for ensuring the honesty of the tabulation server [Com13a].
The auditing is based on observation of the procedures and if the procedures are done
according to the protocol.

Even though the protocol was not followed, as the cast votes were transferred from
ballot storing server to tabulation server on a USB memory card [Com13b], while they
were supposed to be transmitted on a DVD, the audit claimed that this incident did
not have any evident and permanent consequences to the procedure. On the other hand,
there are many examples which suggest that USB memory sticks should not be considered
secure [Hua13].

As the voting process is a required part (but not sufficient, as we have seen lately)
of a democratic society, then this should not be based on ad-hoc methods and unverified
hardware. As hardware verification is nearly infeasible considering the costs and skills
required, then the trust model could be based on mathematically verifiable proofs of
correctness.

Secrecy of a ballot is one of the most fundamental requirements of the elections.
For example, using unverified hardware the tallying server may leak some information
about the content of a specific ballot. The leak could occur through side-channel at-
tacks [Meh14] [GST13] or by assistance of a malicious adversary. If the attacker has also
access to signed ballots, then the voter’s choice could be revealed.

If the connection between the tallied vote and signed vote could be obfuscated then
the success of this specific attack would be negligible. But this obfuscation raises other
problems. For example, how to ensure that the votes are not modified in favour of some
third party? One solution is to use mix-nets which permutes and re-encrypts the ballots,
while giving a proof that the actions are performed correctly. The mix-net may be a
larger system which can also perform threshold decryption, key distribution etc. The
basis of the mix-net is the shuffle, which is used for permuting and re-encryption. In the
case of elections, the number of votes is usually large and this has lead to optimizing the
computation to construct the proofs and perform the mixing.

If the mix-net is combined with tabulation on ciphertexts and a proof of ballot inclu-
sion, then the voter can be highly confident that his vote is correctly counted towards the
result and that his vote is anonymous. Furthermore, the mixing could be performed by
independent parties (for example, by political parties).

In this survey, we will observe some mix-net constructions and give a hint on the
optimization techniques. We will not inspect the full details as the optimization methods

1

are rather specific. Furthermore, programming techniques can be used to further speed
up the computation.

We will start with the preliminaries which are required to describe the requirements
for the cryptosystem used. Then, we will define some notation which is used in the
protocol descriptions. Now it is possible to give an intuition of the mix-net construction
and then we will show the full (abstracted) protocols. We also discuss the computational
complexity of the protocols.

This survey is based on the work by Bayer and Groth [BG12].

2 Preliminaries

The mix-nets rely on several cryptographic primitives which should be familiar to anyone
who has been involved with cryptographic literature.

The required definitions are taken from [BG12].

Lemma 1 (Schwartz-Zippel). Let q be a prime. Let p be a non-zero multivariate polyno-
mial of degree d over a field Zq. Then the probability of p(x1, . . . , xn) = 0 for randomly
chosen x1, . . . , xn ← Z∗q is at most d

q−1 .

Schwartz-Zippel lemma allows to check the equality of two polynomials p1 and p2 of
degrees d1 and d2. If p1 = p2 then p1 − p2 = 0 always. Otherwise, if p1 6= p2 then for

random x1, . . . , xn ← Z∗q , p1 − p2 = 0 with probability at most max(d1,d2)
q−1 .

2.1 Homomorphic public key cryptosystems

It is required to have a homomorphic public key encryption scheme with rerandomization
possibility. In most cases, if the encryption scheme is homomorphic then the ciphertexts
can also be rerandomized.

Definition 1. A public key cryptosystem C is triple of algorithms Gen, E and D.
Key generation algorithm Gen takes as inputs security parameter µ and randomness

ρ and outputs a secret key sk and a corresponding public key pk.
Encryption algorithm E takes in a public key pk, plaintext M and randomness ρ and

outputs corresponding ciphertext C.
Decryption algorithm D takes in a secret key sk, a ciphertext C and outputs corre-

sponding plaintext m or abort symbol ⊥ if the ciphertext is invalid.
For a pair (pk, sk) generated by the key generation algorithm, the cryptosystem is

functional:
∀m ∈M, ρ ∈ Ω : D(sk, E(pk,m; ρ)) = m.

It is common to denote the output of the key generation algorithm as a keyed encryp-
tion and decryption algorithms (Epk,Dsk). We follow this notation in this writing.

Definition 2. A cryptosystem C is homomorphic cryptosystem if the encryption algo-
rithm is homomorphic:

∀m1,m2 ∈M, ρ1, ρ2 ∈ Ω : Epk(m1 �m2; ρ1 + ρ2) = Epk(m1; ρ1)Epk(m2; ρ2),

2

where � is an operation in M.
If � corresponds to multiplication in M, then we say that the cryptosystem is multi-

plicatively homomorphic. Otherwise, if � corresponds to addition inM then we say that
the cryptosystem is additively homomorphic.

The cryptosystem can also be both additively and multiplicatively homomorphic but
we do not require this.

Example 1. ElGamal cryptosystem is multiplicatively homomorphic.
Let G be a group of order q with a generator g ∈ G.
The key generation function returns (g, x) as a secret key and (g, gx = y) as a public

key. Encrypting m with randomness ρ returns (gρ, yρm). Decrypting a ciphertext (c1, c2)
returns c2/c

x
1 .

Now:

Epk(m1m2; ρ1 + ρ2) = (gρ1+ρ2 , yρ1+ρ2m1m2)

= (gρ1 , yρ1m1)(gρ2 , yρ2m2)

= Epk(m1; ρ1)Epk(m2; ρ2)

The encryption algorithm Epk in Definition 1 was an algorithm using a randomness
value ρ as an input. If it possible to change the randomness value of the ciphertext
without decrypting, then we call the cryptosystem rerandomizable.

Example 2. ElGamal cryptosystem is rerandomizable.
This follows directly from the homomorphism:

Epk(m1; ρ1)Epk(1; ρ2) = Epk(m1; ρ1 + ρ2).

If ρ2 ∈ Ω is uniformly sampled, then the new ciphertext Epk(m1; ρ1 + ρ2) is uniformly
sampled from ciphertext space.

This means that if ρ2 is chosen independently from the initial ciphertext then the new
and old ciphertexts are independent. Thus, if ρ2 is kept secret then the initial ciphertext
is also unknown.

2.2 Homomorphic commitment schemes

Definition 3. A commitment scheme O is triple of algorithms Gen, Com and Open.
Key generation algorithm Gen takes as inputs security parameter µ and randomness

ρ and outputs a commitment key ck.
Commitment algorithm Com takes in a commitment key ck, randomness ρ and plain-

text m and returns a commitment value c and a decommitment value d.
Opening algorithm takes in a commitment key ck, a commitment value c and a de-

commitment value d and returns the plaintext or abort symbol ⊥ if the decommitment
value does not correspond to the commitment value.

For a commitment key ck, the commitment scheme is functional:

∀m ∈M, ρ ∈ Ω : Open(ck,Com(ck,m; ρ)) = m.

3

It is common to denote the output of the key generation algorithm as a keyed com-
mitment and opening algorithms (Comck,Openck). We also follow this notation in this
writing.

Definition 4. A commitment scheme O is homomorphic commitment scheme if the
commitment algorithm is homomorphic1:

∀m1,m2 ∈M, ρ1, ρ2 ∈ Ω : Comck(m1 �m2; ρ1 + ρ2) = Comck(m1; ρ1)Comck(m2; ρ2).

Example 3. Pedersen commitment scheme is additively homomorphic.
The key generation function returns (g, y) as a commitment key. Commiting to m

with randomness ρ returns (gmyρ) as a commitment value and (m, ρ) as a decommitment
value. The opening algorithm checks whether c = gmyr and returns m on success and ⊥
on failure.

Now:

Comck(m1 +m2; ρ1 + ρ2) = (gm1+m2yρ1+ρ2)

= (gm1yρ1)(gm2yρ2)

= Comck(m1; ρ1)Comck(m2; ρ2).

Using homomorphism it is possible to commit to several values and to show that these
values have some property without revealing the values themselves.

2.3 Zero-knowledge proofs

Informally, the framework of zero-knowledge proofs gives the prover P the ability to prove
to verifier V that it knows some secret without revealing it (proof of knowledge) or access
to some oracle (proof of possession), e.g. smart card.

Zero-knowledge proofs are necessary for constructing mix-nets as they allow to prove
that the shuffling function is a permutation.

Let σ be some arbitrary side-information all parties possess during interaction. For
example, if a cryptosystem and a commitment scheme is used in the protocol, then σ =
(pk, ck). The statement x is the claim the prover is trying to prove. The witness w is
some fact that backs the claim. The set R is the collection of triples (σ, x, w) such that
corresponding witness w would prove the statement x.

The language Lσ is the set of all statements x that have a witness w for the relation
R. Formally:

Lσ = {x|∃w : (σ, x, w) ∈ R}.

We denote the transcript between P and V on inputs s and t, respectively, as 〈P(s),V(t)〉.
We denote the acceptance or rejection as b = 〈P(s),V(t)〉, where b = 0 denotes rejection
and b = 1 denotes acceptance.

We start defining zero-knowledge proofs by describing the requirements.

1Note that in this definition and in the following example we consider only the commitment value as
the output of the commitment algorithm. This is just for notational convenience and the homomorphism
of opening algorithm follows from this homomorphism

4

Firstly, the protocol needs to be complete, meaning that honest verifier should accept
honest prover’s claim. Formally, for any polynomial-time adversary A:

Pr[σ ← Gen(1λ); (x,w)← A(σ) : (σ, x, w) 6∈ R or 〈P(σ, x, w),V(σ, x)〉 = 1] = 1.

Secondly, the protocol needs to be sound, meaning that if honest verifier accepts the
claim, then it actually holds. Formally, for any polynomial-time adversary A:

Pr[σ ← Gen(1λ);x← A(σ) : x 6∈ Lσ and 〈A,V(σ, x)〉 = 1] < negl(λ).

Thirdly, the protocol needs to be simulatable, meaning that there exists a simulator
S which can simulate the transcript without access to the witness w. Having such a
simulator provides zero-knowledge as the verifier could also interact with the simulator,
who by the definition does not have access to witness w, so the verifier also learns nothing
about w. Formally, there exists a polynomial-time simulator S for all polynomial-time
adversaries A such that:

Pr[σ ← Gen(1λ); (x,w, ρ)← A(σ);

tr← 〈P(σ, x, w),V(σ, x; ρ)〉 : (σ, x, w) ∈ R and A(tr) = 1]

= Pr[σ ← Gen(1λ); (x,w, ρ)← A(σ);

tr← S(σ, x, ρ) : (σ, x, w) ∈ R and A(tr) = 1].

Note that in this formal definition the adversary can append additional information ρ
to the verifier V. But this is not a contradiction, as the verifier can itself modify any
auxiliary information it has.

Definition 5. A triple (Gen,P,V) is called perfect special honest verifier zero knowl-
edge(SHVZK) argument for R with common reference string generator Gen if the protocol
is perfectly complete, computationally sound and simulatable.

In the definition, perfect completeness assures that an honest claim is always accepted.
Statistically, there are no false rejects for honest prover and verifier. Computational
soundness restricts the malicious provers to have an upper limit on its computational
performance.

This definition is still not complete. Firstly, it does not cover the case of dishonest
verifiers. This could be enforced by using commitments schemes - the verifier commits to
its random challenge before seeing the messages from the prover.

Secondly, the definition does not imply the possession of the secret. If the prover
would possess the secret, then it could be extracted. A weaker definition just requires the
existence of such extractor.

Definition 6. An argument (Gen,P,V) has witness-extended emulation, if for all poly-
nomial time deterministic P∗ there exists an expected polynomial-time emulator χ such
that for all polynomial-time adversaries A we have

Pr[σ ← Gen(1λ); (x, s)← A(σ); tr← 〈P∗(σ, x, s),V(σ, x)〉 : A(tr) = 1]

≈ Pr[σ ← Gen(1λ); (x, s, ρ)← A(σ); (tr, w)← χ〈P
∗(σ,x,s),V(σ,x)〉(σ, x, ρ) :

A(tr) = 1 and if tr is accepting then (σ, x, w) ∈ R].

5

This definition requires that there exists an extractor χ, which produces similar argu-
ment to the initial argument and is able to extract the witness used by the prover.

The definitions of simulatability and witness-extended emulation are not contradicting
as in the latter case the emulator has access to additional information ρ which helps it to
reach the goal.

Currently, the prover P must not obtain the challenges sent by the verifier V before
it has sent its messages. This setting is inconvinient as it forces an interactive communi-
cation between each verifier and the prover.

In the non-interactive proofs, the challenges are generated by the prover and it pub-
lishes the transcript. The verifiers check the transcript and see if the responses to the
challenges are correct. However, if the prover can choose the challenges at its will, then
the previous definitions do not hold. The solution is to generate the challenges as an out-
put of some hash function applied to some value (for example, applying the hash function
to the statement x). Such construction of non-interactive zero-knowledge proofs from
interactive zero-knowledge proofs is called a Fiat-Shamir heuristic.

In the random oracle model, the Fiat-Shamir heuristic allows to obtain same security
assumptions as in interactive proofs. Proving the security assumptions using a practical
hash function (with short description) may be difficult or even impossible.

3 Notation

We denote the number of ciphertexts as N = mn. The choice of n and m are covered
later when we look at the storage and computation requirements of the protocol.

For the vectors ~x and ~y we write the point-wise product as ~x~y = (x1y1, . . . , xnyn).
Similarly, we write ~xk = (xk1 , . . . , x

k
n). Applying the permutation π to vector ~x results in

a permuted vector ~xπ = (xπ(1), . . . , xπ(n)).

For the vectors of plaintexts ~M = (M1, . . . ,Mn) and randomnesses ~ρ = (ρ1, . . . , ρn)

we write Epk(~M ; ~ρ) = (Epk(M1; ρ1), . . . , Epk(Mn; ρn)). For the vectors of ciphertexts ~C =

(C1, . . . , Cn) and integers ~a = (a1, . . . , an) we write ~C~a =
∏n
i=1 C

ai
i . For a matrix A ∈

Zn×m which is represented by column vectors ~a1, . . . ,~am we write ~CA = (~C~a1 , . . . , ~C~am).
We use a generalization of Pedersen commitment scheme which allows to commit to

several values. The key generator returns (g1, . . . , gn, y) ⊂ Gn+1 and the commitment
function returns Comck(a1, . . . , an; r) = yr

∏n
i=1 g

ai
i if commiting to values a1, . . . , an with

randomness r. For the vectors of commitments ~c and integers ~b we write ~c
~b =

∏m
j=1 c

bj
j .

For a matrix B with column vectors ~b1, . . . ,~bn we write ~cB = (~c
~b1
1 , . . . ,~c

~bn
n). For a

matrix A ∈ Zn×m we define Comck(A;~r) = (Comck(~a1; r1), . . . ,Comck(~an; rn)). Also, if
the column vectors of A are concatenated to form a new vector, ~a = ~a1| . . . |~an, then
Comck(~a;~r) = Comck(A,~r).

The set of off all permutations of input and output size N is denoted by ΣN .

4 The Bayer-Groth shuffle protocol

In [Gro09], an argument was given in connection to linear algebra over finite field. The
argument could be used for shuffling elements of a finite fields. Bayer and Groth modified

6

[BG12] this argument to be used with group elements. As some of the cryptosystems
work over groups then this also applies to ciphertexts. They modified the argument
such that the computation is done in the exponent of the generator. This approach,
however, increased the number of exponentiations. To overcome this, several techniques
could be used to decrease the overall computation. For example, they used Toom-Cook
technique for polynomial multiplication if the number of ciphertexts is small and Fast
Fourier Transformation otherwise to reduce the amount of computation.

We will describe the protocol at a higher level without too much focus on the compu-
tational improvements, as they are very technical. Those who are interested, can refer to
their article [BG12, Section 4].

Formally, the proof of knowledge for ciphertexts ~C, ~C ′ is a statement that the prover
knows ~ρ ∈ ZNq and π ∈ ΣN such that ~C ′ = Epk(~1; ~ρ)~Cπ. The argument uses multi-
exponentiation and product argument as sub-arguments. Informally, this means that the
prover knows a permutation and randomness values which map initial ciphertexts to new
ciphertexts.

The product argument is a proof of knowledge for inputs ~cA ∈ Gm, b ∈ Zq that the

prover knows A ∈ Zn×m and ~r ∈ Zmq such that ~cA = Comck(A;~r) and
m∏
i=1

m∏
j=1

aij = b.

Firstly, the prover commits to the values π(1), . . . , π(N). Then, he receives the chal-
lenge x from the verifier and then commits to xπ(1), . . . , xπ(N). The prover then receives
challenges y, z and calculates commitments to (using homomorphic properties of the com-
mitment scheme) di − z = yπ(i) + xπ(i) − z for all i = 1, . . . , N . As the verifier can

compute
∏N
i=1(yi + xi − z), then the prover uses the product argument to show that∏N

i=1(di − z) =
∏N
i=1(yi + xi − z). Over randomly chosen z, Schwartz-Zippel lemma

states that the probability that the argument holds is N/(q− 1). If q chosen to be larger
than N by a polynomial factor, then with negligible probability di = yi+ xi.

The multi-exponentiation argument is a proof of knowledge for inputs ~C1, . . . , ~Cm ∈
Hn, C ∈ H,~cA ∈ Gm that the prover knows A = {aj}mj=1 ∈ Zn×mq and ~r ∈ Zmq ,∃ρ ∈

Zq such that C = Epk(1; ρ)
m∏
i=1

~C~aii and ~cA = Comck(A; ρr). The multi-exponentiation

argument is used to prove that the rerandomization of ciphertexts is correct.
Here, {Ci}Ni=1 are the initial ciphertexts and {C ′i}Ni=1 are the permuted ciphertexts.

For the permutation xπ(1), . . . , xπ(N), the prover can show that

N∏
i=1

Cx
i

i =

N∏
i=1

(C ′i)
xπ(i)

and ~cB = Comck(~b;~s). As the encryption scheme is homomorphic, then also

N∏
i=1

Mi =

N∏
i=1

(M ′i)
xπ(i)

.

After taking the discrete logarithm, we have

N∑
i=1

log(Mi)x
i =

N∑
i=1

log(M ′i)x
π(i).

7

We can rewrite the right side as

N∑
i=1

log(M ′i)x
π(i) =

N∑
i=1

log(M ′π−1(i))x
i.

Thus
N∑
i=1

log(Mi)x
i =

N∑
i=1

log(Mπ−1(i))x
i.

We can apply Schwartz-Zippel lemma and thus log(Mi) = log(M ′π−1(i)) with probability

greater than 1 − N
q−1 . Thus also M ′1 = Mπ−1(1), . . . ,M

′
N = Mπ−1(N). This implies that

the rerandomization is correct.
The corresponding protocol is illustrated in Figure 4

Theorem 1. The protocol is a perfect SHVZK argument of knowledge of π ∈ ΣN and
~ρ ∈ Z∗q such that ~C ′ = Epk(~1; ~ρ)~Cπ.

Proof idea. It can be shown that the product argument and the multi-exponentiation
argument are perfect SHVZK.

For completeness, let di = yπ(i) + xπ(i). Then

N∏
i=1

(di − z) =

N∏
i=1

(yπ(i) + xπ(i) − z) =

N∏
i=1

(yi+ xi − z).

Also, if C ′i = Epk(1; ρi)Cπ(i), then

Epk(1; ρ)~C ′
~b = Epk(~1;−~ρ)

~b
(
Epk(~1; ~ρ)~Cπ

)~b
= ~C

~b
π =

N∏
i=1

Cx
π(i)

π(i) = ~C~x.

Because the sub-arguments are perfectly complete, then the full argument is also perfectly
complete.

The soundness of the argument was described in the protocol description. If we
consider that the sub-arguments are sound, then the whole argument is also sound.

The simulator picks random ~r,~s ← Zmq and sets commitments ~cA = Comck(~0;~r)

and ~cB = Comck(~0;~s). It then runs the simulators of the product argument and multi-
exponentiation argument.

Using the witness-extended emulation of the sub-arguments, the emulator can extract
the openings for ~cB and ~cD. From ~cD = ~cyA~cB the emulator can compute the openings ~a,~r
for ~cA. The openings ~a correspond to the permutation ~a = {π(i)}Ni=1 and the emulator
has extracted the permutation.

If the execution is rewinded for N times for different x, then for each xj the multi-
exponentiation emulator returns a witness containing ρ(j) such that

~C~xj = Epk(1; ρ(j))

N∏
i=1

(C ′i)
x
π(i)
j = Epk(1; ρ(j))~C

′~xj
π−1 .

8

Gen

V P

sk, ck sk, ck

~r ← Zmq
~a = {π(i)}Ni=1

~cA = Comck(~a;~r)

x← Z∗q

~cA

~s← Zmq
~b = {xπ(i)}Ni=1

~cB = Comck(~b;~s)

x

y ← Z∗q
z ← Z∗q

~cB

~c−z = Comck(−z, . . . ,−z;~0)

~cD = ~c
y
A~cB

~d = y~a+~b

~t = y~r + s

ρ = −~ρ ·~b

~x = (x, x
2
, . . . , x

N
)
T

y, z

POK[~cD~c−z = Comck(~d− ~z;~t),
N∏
i=1

(di − z) =
N∏
i=1

(yi+ xi − z)]

POK[~C~x = Epk(1; ρ)~C
′~b, ~cB = Comck(~b;~s)]

Check if both arguments hold

Figure 1: The transmitted messages in the Groth-Bayer shuffle protocol

If x1, . . . , xN are different, then the matrix

X =

x
1
1 . . . x1N
...

...
xN1 . . . xNN

is invertible and

~C = (~CX)X
−1

=
(
Epk(~1; ~ρ)~C ′Xπ−1

)X−1

= Epk(~1; ~ρX−1)~C ′π−1 .

The emulator has recovered the randomness ~ρ′ = (−~ρX−1).

9

4.1 Computational complexity and proof size of the Bayer-Groth
shuffle protocol

Let N = nm. Theoretically, the prover needs to do 2 log(m)N exponentiations and
the verifier needs to do 4N exponentiations. Compared to previous results, the prover’s
computation is larger. For example, in Verificatum the prover needs to do 9N exponen-
tiations.

The size of the proof is 11m elements of group G and 5n elements of field Zq. Compared
to previous results, the proof size is smaller. For example, in Verificatum it is needed to
have 3N elements of group G and 4N elements of field Zq.

As m can be chosen freely, then the prover can control the size of the proof and the
computation complexity. If m → N , then the computational complexity and the size of
the proof increases. However, if m → 1, then the computational complexity decreases
while the size of the proof increases. For obtaining the smallest proof, m should be taken
m ≈

√
N .

In [BG12], the authors gave several optimization methods. The efficiency comparison
using different methods is illustrated in the following table.

Optimization Total time Time P Time V Size
m = 8 Unoptimized 570 462 108 4.3 MB

Multi-expo 162 125 37
FFT 228 190 38

m = 16 Unoptimized 900 803 97 2.2 MB
Multi-expo 193 169 24
FFT 245 221 24
Toom-Cook 139 101 38

m = 64 Multi-expo 615 594 21 0.7 MB
FFT 328 307 20
Toom-Cook 128 91 18

Table 1: Run time of Bayer-Groth shuffle argument for N = 100000 on a Core2Duo 2.53
GHz, 3MB L2 cache, 4 GB ram computer

5 Conclusion

We surveyed the shuffle protocol constructed by Bayer and Groth. This shuffle has shorter
proofs of correctness than previous shuffle constructions.

Using a mix-net in practice can lead to new and non-mathematical problems. If we
consider the i-voting protocol, then there should be several parties mixing the votes.
Depending on political choices and legislation this could be prohibited, as this means
handing over the ballots to some external party.

The additional security guarantee that a mix-net could provide, is privacy of the voter.
It obfuscates the connection between input ciphertexts and returned ciphertexts so the
adversary could not distinguish encrypted ballots.

10

Because the shuffle does not have any external information, then none of the initial
security guarantees are sacrificed if a mix-net is used. If the constraints allow, a mix-net
can be used within an organization to increase potential adversary’s work.

However, the mix-nets require homomorphism from the used cryptosystem as the
proofs rely on this property. It could mean that modifications are required for the whole
system.

In conclusion, mix-nets could provide additional security in the i-voting protocol but
its use and possible consequences should be thoroughly studied. There may be a need to
change legislation to allow the use of mix-nets and possible the underlying cryptosystem
should be changed. Furthermore, it is important to educate the voters of the construction
and inner workings of the proof.

References

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for cor-
rectness of a shuffle. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes
in Computer Science, pages 263–280. Springer Berlin Heidelberg, 2012.

[Com13a] The National Electoral Committee. Elektroonilise hääletamise
süsteemi üldkirjeldus (Description of electronic voting sys-
tem). 2004-2013. http://www.vvk.ee/public/dok/

elektroonilise-haaletamise-systeemi-yldkirjeldus-EH-03-03-1_

2013.pdf.

[Com13b] The National Electoral Committee. Kohaliku omavalitsuse volikogu valimiste
e-hääletamise protseduuride hindamise vahearuanne II (The second interim
report of local municipalities e-voting procedures audit). 2013. https://www.
valimised.ee/vahearuanne_2_2013.ddoc.

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In
Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of
Lecture Notes in Computer Science, pages 192–208. Springer Berlin Heidelberg,
2009.

[GST13] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via
low-bandwidth acoustic cryptanalysis. Cryptology ePrint Archive, Report
2013/857, 2013. http://eprint.iacr.org/.

[Hua13] Andrew Huang. On hacking MicroSD cards, December 2013. http://www.

bunniestudios.com/blog/?p=3554.

[Meh14] Neel Mehta. The Heartbleed bug, 2014. http://heartbleed.com/.

11

http://www.vvk.ee/public/dok/elektroonilise-haaletamise-systeemi-yldkirjeldus-EH-03-03-1_2013.pdf
http://www.vvk.ee/public/dok/elektroonilise-haaletamise-systeemi-yldkirjeldus-EH-03-03-1_2013.pdf
http://www.vvk.ee/public/dok/elektroonilise-haaletamise-systeemi-yldkirjeldus-EH-03-03-1_2013.pdf
https://www.valimised.ee/vahearuanne_2_2013.ddoc
https://www.valimised.ee/vahearuanne_2_2013.ddoc
http://www.bunniestudios.com/blog/?p=3554
http://www.bunniestudios.com/blog/?p=3554
http://heartbleed.com/

	Introduction
	Preliminaries
	Homomorphic public key cryptosystems
	Homomorphic commitment schemes
	Zero-knowledge proofs

	Notation
	The Bayer-Groth shuffle protocol
	Computational complexity and proof size of the Bayer-Groth shuffle protocol

	Conclusion

