We assume that the reader is familiar with the basics of Coding Theory.

1 Introduction

Consider a linear $[n, k, d]_q$ code over \mathbb{F}_q; call this code C. We say that the ith symbol of a codeword in C has locality r if this symbol can be reconstructed from r other symbols of the codeword. In this report, we derive a lower bound on the length of C with the added constraint of locality.

Next, we add another constraint named availability and derive a lower bound on the length of C with this constraint. We say that the jth symbol of a codeword in C has availability t if this symbol can be reconstructed from t disjoint groups of other symbols; the size of each of the t groups is at most r. So, a symbol with availability equal to 1 has locality r.

Recall that the length of a linear code is bounded as $n \geq k + d - 1$; this is referred to as the Singleton bound. We will see that with additional constraints like locality and availability, the bounds become larger, as we would expect.

2 Preliminaries

Let C be an $[n, k, d]_q$ linear code over \mathbb{F}_q. We describe C (as in [1]) through a set of vectors: $C = \{c_1, c_2, \ldots, c_n\}$, where each vector $(c_i \in \mathbb{F}_q^k)$ is a column of the generator matrix of C.

The following fact provides a bound for the minimum distance of C.

Fact 1. The code C has a distance d if and only if for every $S \subseteq C$ such that $\text{Rank}(S) \leq k - 1$,

$$|S| \leq n - d.$$
2.1 Locality

We now formally define locality, abbreviated as Loc.

Definition 1. For $\vec{c}_i \in C$, we define $\text{Loc}(\vec{c}_i)$ to be the smallest integer r for which there exists a set $R \subseteq [n] \setminus \{i\}$ of cardinality r such that

$$\vec{c}_i = \sum_{j \in R} \lambda_j \vec{c}_j.$$

(1)

We further define $\text{Loc}(C) = \max_{i \in [n]} \text{Loc}(c_i)$, where $[n]$ is a shorthand for the set: $\{1, 2, \cdots, n\}$.

We elaborate further on the preceding definition. Recall that \vec{c}_i is a column of the generator matrix of C. Let \vec{x} be an information vector that needs to be encoded. Then, the scalar product $\vec{x} \cdot \vec{c}_i$ gives us a corresponding encoded symbol (y_i) from the encoded vector. Hence, (1) can be rewritten as

$$\vec{x} \cdot \vec{c}_i = \sum_{j \in R} \lambda_j \vec{x} \cdot \vec{c}_j,$$

$$y_i = \sum_{j \in R} \lambda_j y_j.$$

Put in words, an encoded symbol is a linear combination of r other symbols, which is what locality intuitively means.

The authors of [1] have liberally extended the notion of a rank of a matrix in the definition that follows.

Definition 2. We say that a code C has information locality r if there exists a set $I(\subseteq C)$ of full rank such that $\text{Loc}(\vec{c}) \leq r$ for all $\vec{c} \in I$.

Next, we introduce a hypergraph construction that captures linear dependencies of elements in the set C.

Consider a hypergraph $H(V,E)$. Let the set of vertices be $V = \{1, 2, \cdots, n\}$, such that a vertex in V corresponds to an element in C. We have a hyperedge for each set of linearly dependent elements of size not exceeding $r + 1$. Symbolically,

$$E = \left\{ S : S \subseteq V, |S| \leq r + 1, \exists \lambda_i \neq 0 \text{ s.t. } \sum_{i \in S} \lambda_i \vec{c}_i = 0 \right\}.$$

The remainder of this section will give a background for codes with an added constraint called availability. The reader may choose to skip to Theorem 1 (next section) at this point.
2.2 Availability

We define something called an \((n,k,r,t)\)-LRC (Locally Repairable Code), as in [3], below.

Definition 3. An \((n,k,r,t)\)-LRC satisfies the following three properties:

1. For each encoded information (systematic) symbol \(y_i, i \in [k]\), there exist \(t\) sets \(\Gamma_1(y_i), \Gamma_2(y_i), \ldots, \Gamma_t(y_i) \subset [n] \setminus \{i\}\), such that \(y_i\) is a function of the encoded symbols indexed by \(\Gamma_j(y_i); j \in [t]\).

2. \(|\Gamma_j(y_i)| \leq r\), for all \(i \in [k], j \in [t]\).

3. \(\Gamma_j(y_i) \cap \Gamma_l(y_i) = \emptyset\) for all \(i \in [k]\) and \(j \neq l \in [t]\).

Put in words, we are now considering codes where each encoded information symbol can be reconstructed from \(t\) disjoint sets, with each set containing \(r\) symbols.

By \(t\), we denote the availability of the code: the number of ‘available’ sets from which the encoded symbol under question can be recovered. We ask the reader to think about what happens when \(t = 1\).

Next, we introduce the concept of repair groups, which we will use in Theorem 2 (next section). By a repair group, we denote the following set: \(\Gamma_j(y_i) \cup \{i\}\); \(\Gamma_j(y_i)\) was introduced earlier. We denote by \(m\) the total number of distinct repair groups.

Example 1. Consider a \((7,3,2,2)\)-LRC with the following encoding of \(\vec{x} = (m_1, m_2, m_3)\):

\[
\vec{y} = (m_1, m_2, m_3, m_1, m_1 + m_2, m_2 + m_3, m_1 + m_3).
\]

This code satisfies Definition 3 with

\[
\begin{align*}
\Gamma_1(y_1) &= \{4\}, & \Gamma_2(y_1) &= \{2, 5\}, \\
\Gamma_1(y_2) &= \{1, 5\}, & \Gamma_2(y_2) &= \{3, 6\}, \\
\Gamma_1(y_3) &= \{2, 6\}, & \Gamma_3(y_3) &= \{1, 7\}.
\end{align*}
\]

In this example, symbols \(y_1, y_2,\) and \(y_3\) have availability 2, as shown by the available sets \(\Gamma_1\) and \(\Gamma_2\) for each \(y_i\). Also notice that \(|\Gamma_j(y_i)| \leq 2\), implying that the locality for each symbol is 2 (see point 2 in Definition 3). We will now construct repair groups and introduce a matrix representing those repair groups.

For this example, we have the following distinct repair groups:

- repair group 1: \(\{1, 4\}\),
• repair group 2: \{1, 2, 5\},
• repair group 3: \{2, 3, 6\},
• repair group 4: \{1, 3, 7\}.

We have 4 distinct repair groups; we will represent these by a \(k \times m\) matrix \(R\) such that each row represents one of the \(k\) encoded information symbols and each column represents a repair group.

The matrix \(R\) for our example is the following:

\[
R = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}.
\]

The matrix may be read as: repair group 1 (i.e. column 1 of \(R\)) has information symbol \(y_1\) associated with it, repair group 2 (column 2) has information symbols \(y_1\) and \(y_2\) associated with it, and so on.

3 Lower bound on length of codes with added requirements

The first requirement we add is locality. We compute a lower bound on the length of a linear code with a given information locality in the following theorem.

Theorem 1. For any \([n, k, d]_q\) linear code with information locality \(r\),

\[n \geq k + d + \left\lceil \frac{k}{r} \right\rceil - 2. \]

Proof. We see from Fact 1 (section 2) that

\[n - d \geq |S|, \]

where \(S \subseteq C\) such that \(\text{Rank}(S) \leq k - 1\). We first construct a set \(S\) that satisfies said properties; Algorithm 1 constructs such a set.

Put in words, the algorithm picks a vector \(\vec{c}\) in \(C\) that is not yet contained in \(S\) and puts a hyperedge (section 2.1) containing \(\vec{c}\) into \(S\), letting \(S\) grow, until the rank of \(S\) exceeds \(k - 2\).

We define the following for our analysis:

• \(s_i\) measures the increase in the size of \(S_i\) in Algorithm 1,
Algorithm 1

1: Let $i = 1$, $S_0 = \{\}$.
2: while $\text{Rank}(S_{i-1}) \leq k - 2$ do
3: \hspace{1em} Pick $\vec{c}_i \in C \setminus S_{i-1}$ s.t. there is a hyperedge T_i in H containing \vec{c}_i.
4: \hspace{1em} if $\text{Rank}(S_{i-1} \cup T_i) < k$ then set $S_i = S_{i-1} \cup T_i$.
5: \hspace{1em} else pick $T' \subset T_i$ s.t. $\text{Rank}(S_{i-1} \cup T') = k - 1$ and set $S_i = S_{i-1} \cup T'$.
6: Increment i.

- t_i measures the increase in the rank of S_i in Algorithm 1.

Observe the following:

$s_i = |S_i| - |S_{i-1}|$.

$|S_l| = \sum_{i=1}^{l} s_i$, where l denotes the number of times S_i has grown.

$t_i = \text{Rank}(S_i) - \text{Rank}(S_{i-1})$.

\[\text{Rank}(S_i) = \sum_{i=1}^{l} t_i = k - 1. \] (2)

Statement (2) follows from observing that the while loop in Algorithm 1 breaks when $\text{Rank} > k - 2$.

We now compute $|S|$ and use Fact 1 to subsequently construct a bound. For this, we count the number of loop iterations in Algorithm 1; we analyze two cases depending on whether line 5 (of the algorithm) executes.

Case 1: only line 4 executes until the loop breaks.

In each iteration, we pick a vector \vec{c}_i such that \vec{c}_i is contained in a hyperedge T_i. Since the size of T_i is at most $r + 1$, we add at most $r + 1$ vectors to S_i, which means $s_i \leq r + 1$.

Notice that $t_i \leq s_i - 1 \leq r$. This is because, first, the increase in rank (i.e., t_i) cannot exceed the increase in the number of vectors, s_i. Furthermore, since the vectors are linearly dependent, the rank of the collection can be at most $s_i - 1$. Thus, $t_i \leq s_i - 1$.

5
Since $t_i \leq r$,

$$\sum_{i=1}^{l} t_i \leq \sum_{i=1}^{l} r = lr,$$

$$k - 1 \leq lr \quad \text{(from (2))},$$

$$l \geq \left\lceil \frac{k-1}{r} \right\rceil,$$

$$k - 1 + l \geq k - 1 + \left\lceil \frac{k-1}{r} \right\rceil. \quad (3)$$

And since $s_i - 1 \geq t_i$, we have

$$|S| = \sum_{i=1}^{l} s_i \geq \sum_{i=1}^{l} (t_i + 1).$$

$$\Rightarrow |S| \geq \sum_{i=1}^{l} t_i + \sum_{i=1}^{l} 1.$$

$$\Rightarrow |S| \geq k - 1 + l \quad \text{(from (2))}. \quad (4)$$

Notice that

$$k - 1 + \left\lceil \frac{k-1}{r} \right\rceil \geq k + \left\lceil \frac{k}{r} \right\rceil - 2. \quad (5)$$

Hence, from (3), (4) and (5), $|S| \geq k - 1 + l \geq k - 1 + \left\lceil \frac{k-1}{r} \right\rceil \geq k + \left\lceil \frac{k}{r} \right\rceil - 2$, giving us:

$$|S| \geq k + \left\lceil \frac{k}{r} \right\rceil - 2.$$

Case 2: line 5 executes in the last (l-th) iteration of the loop in Algorithm 1.

Recall the following from Case 1:

$$|S| = \sum_{i=1}^{l} s_i \geq \sum_{i=1}^{l} (t_i + 1).$$

For this case,

$$|S| = \sum_{i=1}^{l-1} s_i + s_l.$$

$$\geq \sum_{i=1}^{l-1} (t_i + 1) + s_l. \quad (6)$$
We need to compute s_l. Recall from Case 1 that $|T_l| \leq r + 1$. However, in the l-th step (line 5, i.e.), we pick $T' \subset T_l$ and put T' into S. Thus, we put at most r vectors into S in this step; this means that $s_l \leq r$. Also, $t_l \leq s_l$ because the increase in rank should not exceed the increase in the size of S.

The inequality (6) then becomes

$$|S| \geq \sum_{i=1}^{l-1} t_i + \sum_{i=1}^{l-1} 1 + t_l.$$

$$\geq \sum_{i=1}^{l} t_i + \sum_{i=1}^{l-1} 1.$$

$$= k - 1 + l - 1.$$

(7)

Notice the expression $k - 1$ in (7) appears because the final rank is $k - 1$ after line 5 executes.

Finally, we compute the total number of while loop iterations (l) in Algorithm 1. We know that the rank can increase by at most r in each step except the last, there are l steps in total and we hit a rank of k in the l-th iteration (at line 4). So, $k \leq rl$. This means $l \geq \lceil \frac{k}{r} \rceil$.

Hence, from (7), we have

$$|S| \geq k + \left\lceil \frac{k}{r} \right\rceil - 2.$$

In both Cases 1 and 2 of the analysis, we obtain the same bound for $|S|$. We combine this bound with Fact 1, giving us

$$n \geq k + d + \left\lceil \frac{k}{r} \right\rceil - 2.$$

Example 2. We will construct a code that achieves the bound established in Theorem 1 with equality. In other words, we show that a linear $[n, k, d]_q$ code with information locality r has length $n = k + d + \left\lceil \frac{k}{r} \right\rceil - 2$.

We construct pyramid codes (as in [2]) from systematic (n, k, d) Maximum Distance Separable (MDS) codes of distance d in the following way: consider the first parity symbol of the MDS code; call this symbol y_p. Replace this symbol with $\left\lceil \frac{k}{r} \right\rceil$ symbols (y_{p_i}), such that

$$y_p = \sum_{i=1}^{\left\lceil \frac{k}{r} \right\rceil} y_{p_i}.$$
Each y_{pi} is a parity symbol for r information symbols and no two y_{pi} have common information symbols.

Then, the pyramid code would contain k information symbols; of the $d - 1$ parity symbols of the MDS code, 1 symbol was replaced with $\lceil \frac{k}{r} \rceil$ symbols during the construction above. Thus the length of the constructed code would be

\[
\begin{align*}
n &= k + (d - 1) - 1 + \left\lceil \frac{k}{r} \right\rceil, \\
n &= k + d + \left\lceil \frac{k}{r} \right\rceil - 2,
\end{align*}
\]

as required.

This code has information locality r since every information symbol can be recovered in the following way:

- pick the parity symbol (y_{pi}) corresponding to the lost information symbol,
- pick the other $r - 1$ information symbols that are contained in y_{pi}.

Notice that, the minimum distance of the newly constructed code is at least d (i.e., unchanged). We leave it to the reader to think about this further. ■

Recall that R is a matrix whose columns represent repair groups of a code, as defined in section 2.2. We state, without proof, the following lemma.

Lemma 1. The number of columns in R satisfies the inequality

\[
m \geq \left\lceil \frac{kt}{r} \right\rceil.
\]

We end this section by computing a lower bound on the length of codes with another added requirement: availability. The following theorem derives a lower bound on the length of a linear LRC (Locally Repairable Code).

Theorem 2. Let C be a linear (n, k, r, t)-LRC such that any repair group defined by R contains only 1 parity symbol. Then, the length of the code is

\[
n \geq k + d - 1 + \left\lceil \frac{kt}{r} \right\rceil - t.
\]

Proof. Recall Fact 1:

\[
n - d \geq |S|. \tag{8}
\]
We will construct a set S that satisfies properties stated in Fact 1; we consider two cases.

Case 1: There is an information symbol which has exactly t disjoint repair groups associated with it.

Call this information symbol i. This then means that row i in matrix R has exactly t ones.

We define the following set: $S = ([k] \setminus \{i\}) \cup P_{R_i}$, where P_{R_i} denotes the set of parity symbols of columns of R (repair groups) that have zero as their i-th entry.

We now compute $|S|$. Notice that $|[k] \setminus \{i\}| = k - 1$; this should be obvious. Further, notice $|P_{R_i}| = m - t$. This is because there are t ones in row i (seen earlier) and $m - t$ zeroes in the same row. Each one of those $m - t$ columns (or repair groups) have 1 parity symbol, as mandated by the theorem.

Observe that $([k] \setminus \{i\})$ and P_{R_i} are disjoint because the first set refers to information symbols and the second set refers to parity symbols. Thus, $|S| = |[k] \setminus \{i\}| + |P_{R_i}| = k - 1 + m - t$. From the discussion so far, it can also be seen that we cannot recover the i-th information symbol from the symbols indexed by S. Thus, from (8), we have the following:

$$
\begin{align*}
 n - d & \geq |S|, \\
 n - d & \geq k - 1 + m - t, \\
 n & \geq k + d - 1 + m - t.
\end{align*}
$$

Since $m \geq \lceil \frac{kt}{r} \rceil$ from Lemma 1,

$$
 n \geq k + d - 1 + \left\lceil \frac{kt}{r} \right\rceil - t.
$$

(9)

Case 2: There is an information symbol which has more than t disjoint repair groups associated with it.

We pick an information symbol with the smallest number of repair groups larger than t. Call this information symbol y_j; assume that the jth row in R (corresponding to the information symbol) has Hamming weight $t' > t$. Then, $kt' \leq \{\text{number of 1s in } R\} \leq mr$, giving us

$$
 m \geq \left\lceil \frac{kt'}{r} \right\rceil.
$$

(10)

We can now plug in our reasoning from Case 1 to construct $S = ([k] \setminus \{j\}) \cup P_{R_j}$ such that the j-th symbol cannot be recovered from the encoded symbols indexed by S.

9
Thus we have,

\[|S| \leq n - d, \]

\[k - 1 + m - t' \leq n - d, \]

\[n \geq k + d - 1 + m - t', \]

\[n \geq k + d - 1 + \left\lceil \frac{kt'}{r} \right\rceil - t'. \quad (11) \]

We used the result from (10) to obtain (11).

Since \(t' > t \), for \(r \leq k \), we have \(k + d - 1 + \left\lceil \frac{kt'}{r} \right\rceil + t' > k + d - 1 + \left\lceil \frac{kt}{r} \right\rceil + t \).

Combining this with (9) and (11), we finally obtain

\[n \geq k + d - 1 + \left\lceil \frac{kt}{r} \right\rceil - t. \]

\[\square \]

4 Comments

Code locality is of interest in distributed storage systems: we can think of the \(i \)-th storage server in such a system as the \(i \)-th symbol of a codeword. In an event where the \(i \)-th server fails, we can use \(r \) other servers to reconstruct the data lost from failure. Since data transmission incurs costs, it is of interest to find a lower bound on the number of servers needed to repair the information in the failed server.

References

