MTAT.07.017
Applied Cryptography

Transport Layer Security (TLS)
Advanced Features

University of Tartu

Spring 2022
Server-authenticated TLS

Client is usually authenticated on the application level by some shared secret (e.g., password). This can go wrong:

- Server can be impersonated
- Server can be compromised
- Password might be reused in other services
- Password can be guessed
- Password can be phished
Client Certificate Authentication

- **CertificateVerify** – client’s signature over all handshake messages
- **Can CertificateVerify be reused in another handshake?**
- **Why is CertificateVerify after ClientKeyExchange?**
- **Client’s Certificate is sent before ChangeCipherSpec**
- **Client proves its identity by signing and not by decrypting**
- **Solves most of the problems of password authentication**
Renegotiation

• Any party can initiate negotiation of a new TLS session:
 • Client by sending ClientHello
 • Server by sending HelloRequest

• Handshake messages of the new TLS session are protected by the cipher suite negotiated in the previous TLS session

• Used by the server to renegotiate a stronger cipher suite or to request a client certificate authentication if on the application level a client tries to access some resource that requires such a security measure

• Client-initiated renegotiation usually disabled on the server
Certificate request on renegotiation

ClientHello

ServerHello, Certificate, ServerHelloDone

ClientKeyExchange

[ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data (GET /auth HTTP/1.1)

HelloRequest

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify

[ChangeCipherSpec], Finished

...
If the Key Exchange type is RSA:

- If we can get a hold of the server’s RSA private key, we can decrypt the Client Key Exchange message and read the pre-master secret key. No other heavy work need be done.
- Valid for life of certificate
Perfect Forward Secrecy (PFS)

PFS is achieved by using the server’s long-term private key to authenticate a short-term/ephemeral asymmetric key that is used to encrypt the actual data.

Benefits:
- Attacker who has compromised server’s private key cannot decrypt network traffic
 - Attacker has to execute active MITM attacks
- Attacker has to crack x asymmetric keys to decrypt x sessions made to the server

Used in TLS cipher suites: TLS_(EC)DHE_RSA_WITH_*
(EC)Diffie-Hellman Key Exchange

- **ServerKeyExchange** contains DH group, server’s DH public key and server’s RSA signature over DH public key, client randomness and server randomness
- **ClientKeyExchange** contains client’s DH public key
- How is “pre-master secret” calculated?
- Handshake requires two public key operations (DH+RSA)
- Achieves perfect forward secrecy
TLS extensions

- ClientHello can contain length-prefixed extensions
- ServerHello will contain a response to client’s extensions
- Most popular extensions:
 - Server Name Indication (SNI) extension (RFC 3546)
 - Extension: server_name (len=17)
 - Type: server_name (0)
 - Length: 17
 - Server Name Indication extension
 - Server Name list length: 15
 - Server Name Type: host_name (0)
 - Server Name length: 12
 - Server Name: facebook.com
 - TLS Session Tickets (RFC 5077)
 - Extension: session_ticket (len=0)
 - Type: session_ticket (35)
 - Length: 0
 - Data (0 bytes)
 - Handshake Protocol: New Session Ticket
 - Handshake Type: New Session Ticket (4)
 - Length: 166
 - TLS Session Ticket
 - Session Ticket Lifetime Hint: 7200 seconds (2 hours)
 - Session Ticket Length: 160
 - Session Ticket: d5a90389e1b88e2731b16af6bdf754466544442ff4a1826...
 - Extension: session_ticket (len=160)
 - Type: session_ticket (35)
 - Length: 160
 - Data (160 bytes)
TLS extensions

• Certificate Status Request (RFC 6066)
 • Extension: status_request (len=5)
 • Type: status_request (5)
 • Length: 5
 • Certificate Status Type: OCSP (1)
 • Responder ID list Length: 0
 • Request Extensions Length: 0

• TLSv1.2 Record Layer: Handshake Protocol: Certificate Status
 • Content Type: Handshake (22)
 • Version: TLS 1.2 (0x0303)
 • Length: 286

• Handshake Protocol: Certificate Status
 • Handshake Type: Certificate Status (22)
 • Length: 282
 • Certificate Status Type: OCSP (1)
 • OCSP Response Length: 278

• OCSP Response
 • responseStatus: successful (0)

• Supported Elliptic Curves (RFC 4492)
 • Extension: supported_groups (len=10)
 • Type: supported_groups (10)
 • Length: 10
 • Supported Groups List Length: 8

• Supported Groups (4 groups)
 • Supported Group: x25519 (0x001d)
 • Supported Group: secp256r1 (0x0017)
 • Supported Group: secp384r1 (0x0018)
 • Supported Group: secp521r1 (0x0019)