
MTAT.07.017
Applied Cryptography

Certificate Revocation List (CRL)
Online Certificate Status Protocol (OCSP)

University of Tartu

Spring 2021

1 / 24



Certificate validity
It may be required to invalidate (revoke) a certificate before its expiration.

Examples:

• Private key compromised

• Misissued certificate

• Data has changed

Solution – Certificate Revocation List (CRL):

List of unexpired certificates that have been revoked by CA

• Where can a relying party find the CRL?

• How can we assure the integrity of the CRL?

• How frequently should the CA issue the CRL?

• How frequently should the relying parties refresh the CRL?

• How can the relying party know that the CRL is fresh?
2 / 24



CRL Distribution Points

3 / 24



Certificate Revocation List (CRL)

CertificateList ::= SEQUENCE {
tbsCertList TBSCertList,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING }

TBSCertList ::= SEQUENCE {
version Version OPTIONAL, -- if present, MUST be v2(1)
signature AlgorithmIdentifier,
issuer Name,
thisUpdate UTCTime,
nextUpdate UTCTime OPTIONAL,
revokedCertificates SEQUENCE OF SEQUENCE {

userCertificate CertificateSerialNumber,
revocationDate UTCTime,
crlEntryExtensions Extensions OPTIONAL -- in v2 } OPTIONAL,

crlExtensions [0] EXPLICIT Extensions OPTIONAL -- in v2 }

http://tools.ietf.org/html/rfc5280

4 / 24

http://tools.ietf.org/html/rfc5280


Certificate Revocation List (CRL)

• tbsCertList – DER structure to be signed by CRL issuer

• version – for v1 absent, for v2 contains 1

• v2 introduces CRL and CRL entry extensions

• signature – AlgorithmIdentifier from tbsCertList sequence

• issuer – identity of issuer who issued (signed) the CRL

• thisUpdate – date when this CRL was issued

• nextUpdate – date when next CRL will be issued

• revokedCertificates – list of revoked certificates

• userCertificate – serial number of revoked certificate
• revocationDate – time when CA processed revocation request
• crlEntryExtensions – provides additional revocation information

• crlExtensions – provides more information about the CRL

5 / 24



Certificate chain

• How to validate a certificate chain?

• Where to check whether the subject’s certificate is not revoked?

• In the CRL issued by the intermediate CA (usually every 12h)

• Grace period

• Where to check whether the intermediate CA is not revoked?

• In the CRL issued by the root CA (usually every 3 months)

• Grace period?!

• Where to check whether the root CA is not revoked?

• In the CRL issued by the root CA itself (flawed)
• Must be revoked by out-of-band means

Who should be liable for the actions made after the root CA private key has been
compromised?

6 / 24



Liability analysis

Let’s assume that a subject’s private key has been compromised.

Who (subject, CA or relying party) is liable for actions made with the key:

• in the time period after revocation information has appeared in the CRL?

• in the time period after the CRL has been issued but not available to relying
parties (e.g., CA server downtime)?

• in the time period before the next CRL has been issued?

• in the time period before the CA has marked the certificate revoked in their
internal database?

• in the time period before the CA has been informed about the key
compromise?

7 / 24



Questions

• How can a relying party find the CRL?

• How is the integrity of CRL data assured?

• How frequently should the CA issue a CRL?

• How frequently should the relying parties refresh the CRL?

• How can the relying party know that the CRL is fresh?

• How can it be verified that the root CA certificate has not been revoked?

• Is the subject liable for the transactions made after the certificate is revoked?

• Is the subject liable for the transactions made in the certificate validity period?

8 / 24



Online Certificate Status Protocol

CRL shortcomings:

• Size of CRLs

• Client-side complexity

• Outdated status information

“The Online Certificate Status Protocol (OCSP)
enables applications to determine the (revocation) state of an identified certificate.”

• Where can the relying parties find the OCSP responder?

• How is a certificate identified in the OCSP request?

• How is the integrity of an OCSP response assured?

• How can the freshness of an OCSP response be ensured?

9 / 24



Authority Information Access

10 / 24



OCSP over HTTP

11 / 24



Request syntax
OCSPRequest ::= SEQUENCE {

tbsRequest TBSRequest,
optionalSignature [0] Signature OPTIONAL }

Signature ::= SEQUENCE {
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING,
certs [0] SEQUENCE OF Certificate OPTIONAL }

TBSRequest ::= SEQUENCE {
version [0] Version DEFAULT v1(0),
requestorName [1] GeneralName OPTIONAL,
requestList SEQUENCE OF SEQUENCE {

reqCert CertID,
singleRequestExtensions [0] Extensions OPTIONAL }

requestExtensions [2] Extensions OPTIONAL }

CertID ::= SEQUENCE {
hashAlgorithm AlgorithmIdentifier,
issuerNameHash OCTET STRING, -- Hash of Issuer's DN
issuerKeyHash OCTET STRING, -- Hash of Issuer's public key

(i.e., hash of subjectPublicKey BIT STRING content)
serialNumber CertificateSerialNumber }

http://tools.ietf.org/html/rfc6960
12 / 24

http://tools.ietf.org/html/rfc6960


Response syntax

OCSPResponse ::= SEQUENCE {
responseStatus OCSPResponseStatus,
responseBytes [0] EXPLICIT ResponseBytes OPTIONAL }

OCSPResponseStatus ::= ENUMERATED {
successful (0), --Response has valid confirmations
malformedRequest (1), --Illegal confirmation request
internalError (2), --Internal error in issuer
tryLater (3), --Try again later

--(4) is not used
sigRequired (5), --Must sign the request
unauthorized (6) --Request unauthorized

}

ResponseBytes ::= SEQUENCE {
responseType OBJECT IDENTIFIER, --id-pkix-ocsp-basic
response OCTET STRING }

• responseBytes provided only if responseStatus is “successful”

13 / 24



Response syntax
response ::= SEQUENCE {

tbsResponseData ResponseData,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING,
certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL }

ResponseData ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
responderID [1] Name,
producedAt GeneralizedTime,
responses SEQUENCE OF SEQUENCE {

certID CertID,
certStatus CertStatus,
thisUpdate GeneralizedTime,
nextUpdate [0] EXPLICIT GeneralizedTime OPTIONAL,
singleExtensions [1] EXPLICIT Extensions OPTIONAL }

responseExtensions [1] EXPLICIT Extensions OPTIONAL }

CertStatus ::= CHOICE {
good [0] IMPLICIT NULL,
revoked [1] IMPLICIT SEQUENCE {

revocationTime GeneralizedTime,
revocationReason [0] EXPLICIT CRLReason OPTIONAL }

unknown [2] IMPLICIT NULL }

14 / 24



Who signs OCSP responses?

The key used to sign the response MUST belong to one of the following:

• CA who issued the certificate in question

• CA Authorized Responder who holds a specially marked certificate issued directly
by the CA, indicating that the responder may issue OCSP responses for that CA

• OCSP signing delegation SHALL be designated by the inclusion of
id-kp-OCSPSigning flag in an extendedKeyUsage extension of the responder’s
certificate

• How can the revocation status of this certificate be checked?

• Trusted Responder whose public key is trusted by the requester

• Trust must be established by some out-of-band means

15 / 24



How can the freshness of a response be checked?

• Replay attack

• Check the signed producedAt field

• What should be the allowed time difference?

• Reliance on the correctness of system clock

• Include a random nonce in the OCSP request and check it in the response

• OCSP nonce extension (optional)

• Prevents replay attacks

• Vulnerable to downgrade attacks

• OCSP response caching

• The current time between thisUpdate and nextUpdate

16 / 24



Revocation checking by browsers
• CRLs are not supported

• Problems with OCSP:

• Privacy leakage

• Initial page loading slower

• Online checks are not, generally, performed by Chrome (uses CRLSets)

• Firefox is not brave enough to fail-safe:

• Solution is OCSP stapling (web server provides OCSP response to the browser)

• OCSP must-staple x509v3 extension to prevent downgrade attacks

• How fresh should the OCSP response be?

• Shorter certificate validity period may help
17 / 24



Questions

• Where can a relying party find the OCSP responder?

• How is a certificate identified in the OCSP request?

• How is the integrity of the OCSP response assured?

• How can the freshness of the OCSP response be ensured?

• How frequently should the validity status be checked?

• What problem does the OCSP nonce extension solve?

• What is a replay attack?

• What is a downgrade attack?

18 / 24



Hypertext Transfer Protocol (HTTP)
• Application layer client-server, request-response protocol
• Runs over TCP (Transmission Control Protocol) port 80

Client request (http://example.com/hello):
GET /hello HTTP/1.1
Host: example.com
Connection: close

POST /hello HTTP/1.1
Host: example.com
Content-Length: 24
Connection: close

sending_this_binary_blobServer response:
HTTP/1.1 200 OK
Date: Thu, 25 Mar 2021 11:39:23 GMT
Server: Apache
Content-Length: 7033
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tran...

• Header lines must all end with <CR><LF> (b"\r\n")
• Header lines are separated from the body by an empty line
• POST requests have a non-empty request body

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol 19 / 24

http://example.com/hello
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol


Sockets in Python
>>> import socket
>>> s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
>>> s.connect(("example.com", 80))
>>> s.send(b'GET / HTTP/1.1\r\nHost: example.com\r\n\r\n')
37
>>> s.recv(20)
b'HTTP/1.1 200 OK\r\nAge'

• recv() returns bytes that are available in the read buffer

• recv() will wait if the read buffer is empty (blocking by default)

• recv() will return 0 bytes if the connection is closed

• We must know how many bytes we must get
• Correct way to read HTTP response:

• Read byte-by-byte until the full response header is received
• Extract body size from Content-Length header
• Read byte-by-byte until the full response body is received
• Avoid endless loops by checking the return value of recv()

http://docs.python.org/3/howto/sockets.html
20 / 24

http://docs.python.org/3/howto/sockets.html


Task: OCSP checker
Implement a utility that queries an OCSP responder for a certificate’s validity:

$ ./ocsp_check.py valid.pem

[+] URL of OCSP responder: http://ocsp.digicert.com

[+] Downloading issuer certificate from: http://cacerts.digicert.com/DigiCertSHA2HighAssuranceServerCA.crt

[+] OCSP request for serial: 4610391752464174971427059223496372607

[+] Connecting to ocsp.digicert.com...

[+] OCSP producedAt: 2021-03-25 09:39:00

[+] OCSP thisUpdate: 2021-03-25 09:39:00

[+] OCSP nextUpdate: 2021-04-01 08:54:00

[+] OCSP status: good

$ ./ocsp_check.py revoked.pem

[+] URL of OCSP responder: http://evrootocsp.pkioverheid.nl

[+] Downloading issuer certificate from: http://cert.pkioverheid.nl/EVRootCA.cer

[+] OCSP request for serial: 10000616

[+] Connecting to evrootocsp.pkioverheid.nl...

[+] OCSP producedAt: 2021-03-25 12:00:56

[+] OCSP thisUpdate: 2021-03-25 12:00:56

[+] OCSP nextUpdate: 2021-03-27 12:00:56

[+] OCSP status: revoked

21 / 24



Task: OCSP checker
• Extract OCSP responder’s URL and CA certificate’s URL from certificate’s

Authority Information Access (AIA) extension

• Send HTTP requests using Python sockets (the correct way! – see slide 20)

• Use urlparse for easy URL parsing:

>>> from urllib.parse import urlparse
>>> urlparse("http://example.com/abc")
ParseResult(scheme='http', netloc='example.com', path='/abc', params='', query='', fragment='')
>>> urlparse("http://example.com/abc").netloc
'example.com'

• Use regular expression to extract the length of an HTTP response body:

>>> import re
>>> re.search('content-length:\s*(\d+)\s', header.decode(), re.S+re.I).group(1)

• Construct OCSP request using your ASN.1 DER encoder

• To construct issuerKeyHash (CertID) encode subjectPublicKey bits to bytes

• OCSP response parsing code is in the template

• Signature verification checks can be skipped
22 / 24



Task: OCSP checker
• OCSP requests must include “Content-Type: application/ocsp-request”

• To debug HTTP errors use Wireshark’s “Follow → TCP Stream” feature

• ocsp.digicert.com returns “unauthorized” for unrecognized CertIDs

• OCSP request for valid.pem:
$ dumpasn1 valid.pem_ocsp_req

0 81: SEQUENCE {

2 79: SEQUENCE {

4 77: SEQUENCE {

6 75: SEQUENCE {

8 73: SEQUENCE {

10 9: SEQUENCE {

12 5: OBJECT IDENTIFIER sha1 (1 3 14 3 2 26)

19 0: NULL

: }

21 20: OCTET STRING

: CF 26 F5 18 FA C9 7E 8F 8C B3 42 E0 1C 2F 6A 10

: 9E 8E 5F 0A

43 20: OCTET STRING

: 51 68 FF 90 AF 02 07 75 3C CC D9 65 64 62 A2 12

: B8 59 72 3B

65 16: INTEGER 03 77 ED DC FA F8 BE 34 BA 23 3C 7C 2B 9A 31 7F

: }

: }

: }

: }

: }
23 / 24



Comments

The wrong way of downloading HTTP response body:

• Reading the response in one go (wrong!):

body = s.recv(content_length)

“The receive calls normally return any data available, up to the requested
amount, rather than waiting for receipt of the full amount requested.”

• Reading until the socket is closed (wrong!):

body = b''
buf = s.recv(1024)
while len(buf):

buf = s.recv(1024)
body+= buf

After sending a response, an HTTP/1.1 server will wait for more
request/response exchanges, unless the header “Connection: close” was
specified by the client.
• s.recv() will hang until the timeout configured by the server is reached

24 / 24


