MTAT.07.017
Applied Cryptography

Certificate Revocation List (CRL)
Online Certificate Status Protocol (OCSP)

University of Tartu

Spring 2021

1/24

Certificate validity
It may be required to invalidate (revoke) a certificate before its expiration.

Examples:
® Private key compromised
® Misissued certificate

® Data has changed

Solution — Certificate Revocation List (CRL):
List of unexpired certificates that have been revoked by CA

Where can a relying party find the CRL?
® How can we assure the integrity of the CRL?
How frequently should the CA issue the CRL?

How frequently should the relying parties refresh the CRL?

How can the relying party know that the CRL is fresh?

2/24

CRL Distribution Points

Certificate Viewer: *.facebook.com
General | Details
Certificate Hierarchy
ORI S -
DigiCert SHA2 High Assurance Server CA

* Facebook.com

Certificate Fields
Extensions

Certification Authority Key ID
Certificate Subject Key ID
Certificate Subject Alternative Name
Certificate Key Usage
Extended Key Usage
CRL Distribution Points
Certificate Policies
Authority Information Access

Field Value

Not Critical

UR: httplj/(rti_digi(ert.(om];haz—harserveﬁjé.m
URL: http:f/crld.digicert.com/shaz-ha-server-g6.crl

Export..

3/24

Certificate Revocation List (CRL)

CertificatelList ::= SEQUENCE {
tbsCertlList TBSCertList,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING 1}
TBSCertList ::= SEQUENCE {
version Version OPTIONAL, -- if present, MUST be v2(1)
signature AlgorithmIdentifier,
issuer Name,
thisUpdate UTCTime,
nextUpdate UTCTime OPTIONAL,
revokedCertificates SEQUENCE OF SEQUENCE {
userCertificate CertificateSerialNumber,
revocationDate UTCTime,

crlEntryExtensions Extensions OPTIONAL -- in v2 } OPTIONAL,
crlExtensions [0] EXPLICIT Extensions OPTIONAL

http://tools.ietf.org/html/rfc5280

-- in v2 }

4/24

http://tools.ietf.org/html/rfc5280

Certificate Revocation List (CRL)
tbsCertList — DER structure to be signed by CRL issuer
version — for vl absent, for v2 contains 1

® v2 introduces CRL and CRL entry extensions
signature — AlgorithmIdentifier from tbsCertList sequence
issuer — identity of issuer who issued (signed) the CRL
thisUpdate — date when this CRL was issued
nextUpdate — date when next CRL will be issued

revokedCertificates — list of revoked certificates

® userCertificate — serial number of revoked certificate

® revocationDate — time when CA processed revocation request

® crlEntryExtensions — provides additional revocation information
crlExtensions — provides more information about the CRL

5/24

Certificate chain
_ﬁJ GlobalSign

How to validate a certificate chain?

Where to check whether the subject’s certificate is not revoked?
® |n the CRL issued by the intermediate CA (usually every 12h)
® Grace period

Where to check whether the intermediate CA is not revoked?

® |n the CRL issued by the root CA (usually every 3 months)

® Grace period?!
Where to check whether the root CA is not revoked?

® In the CRL issued by the root CA itself (flawed)
® Must be revoked by out-of-band means

Who should be liable for the actions made after the root CA private key has been

compromised?
6/24

Liability analysis

Let's assume that a subject’s private key has been compromised.

Who (subject, CA or relying party) is liable for actions made with the key:

in the time period after revocation information has appeared in the CRL?

in the time period after the CRL has been issued but not available to relying
parties (e.g., CA server downtime)?

in the time period before the next CRL has been issued?

in the time period before the CA has marked the certificate revoked in their
internal database?

in the time period before the CA has been informed about the key
compromise?

7/24

Questions

How can a relying party find the CRL?

How is the integrity of CRL data assured?

How frequently should the CA issue a CRL?

How frequently should the relying parties refresh the CRL?

How can the relying party know that the CRL is fresh?

How can it be verified that the root CA certificate has not been revoked?

Is the subject liable for the transactions made after the certificate is revoked?

Is the subject liable for the transactions made in the certificate validity period?

8/24

Online Certificate Status Protocol

CRL shortcomings:
¢ Size of CRLs

e (lient-side complexity

e Qutdated status information

“The Online Certificate Status Protocol (OCSP)
enables applications to determine the (revocation) state of an identified certificate.”
® Where can the relying parties find the OCSP responder?
® How is a certificate identified in the OCSP request?
® How is the integrity of an OCSP response assured?

® How can the freshness of an OCSP response be ensured?

9/24

Authority Information Access

Certificate Viewer: *.facebook.com
General | Details

Certificate Hierarchy
UGN U RS G LGN 33U LY RO
DigiCert SHA2 High Assurance Server CA
* Facebook.com
Certificate Fields
Extensions
Certification Authority Key ID
Certificate Subject Key ID
Certificate Subject Alternative Name
Certificate Key Usage
Extended Key Usage
CRL Distribution Points
Certificate Policies
Authority Information Access
Field Value
Not Critical

OCSP Responder: URL: httpi//ocsp.digicert.com
CA lssuers: URI: hitp://cacerts.digicert.com/DigiCertSHA2HighAssuranceServer CA.crt

Export..

10/24

OCSP over HTTP

Wireshark - Follow TCP Stream (tcp.stream eq 0) - enp0s31F6 (host ocsp.

POST / HTTP/1.1

Host: ocsp.digicert.com

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:86.0) Gecko/20100101 Firefox/86.0
Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/ocsp-request

Content-Length: 83

Connection: keep-alive

GQEOBMEKEIA . . +
..Qh.....u<..edb...
Accept-Ranges:
Age: 5835
Cache-Control: max-age=88919

Content-Type: application/ocsp-response
Date: Thu, 25 Mar 2021 10:34:17 GMT

Etag: "665b08D5-1d7"

Expires: Fri, 26 Mar 2021 11:16:16 GMT
Last-Modified: Wed, 24 Mar 2021 £9:39:01 GMT
Server: ECS (via/F33E)

X-Cache: HIT

Content-Length: 471

co B
LoA.8<| 5 1 HTTP/L.1 200 0K

..u<..edb...Yr;..202109324093901Z050q018 coifoscoooos- ooz =oootl-cdls- o
..282103240939@17. .. .28210331885401260

) N 1 | M, N5 oocttdoaog .Jms..5.b. .k.L...bt 0 - EP - R
oo 5.36.x.0.u. ..pvd{.y. - P
1 client pkt, 1 server pkt, 1 turn.
Entire conversation (1.177 bytes) > Show and save data as ASCIl > Stream |0
Find: [Find Next |
Filter Out This Stream Print Save as... Back X Close :iHeIp

11/24

Request syntax

0CSPRequest ::= SEQUENCE {
tbsRequest TBSRequest,
optionalSignature [0] Signature OPTIONAL }

Signature ::= SEQUENCE {

signatureAlgorithm AlgorithmIdentifier,

signature BIT STRING,

certs [0] SEQUENCE OF Certificate OPTIONAL }
TBSRequest ::= SEQUENCE {

version [0] Version DEFAULT v1(0),

requestorName [1] GeneralName OPTIONAL,

requestList SEQUENCE OF SEQUENCE {

reqCert CertID,

singleRequestExtensions [0] Extensions OPTIONAL }
requestExtensions [2] Extensions OPTIONAL }

CertID ::= SEQUENCE {
hashAlgorithm AlgorithmIdentifier,
issuerNameHash OCTET STRING, -- Hash of Issuer's DN
issuerKeyHash OCTET STRING, -- Hash of Issuer's public key
(i.e., hash of subjectPublicKey BIT STRING content)
serialNumber CertificateSerialNumber }

http://tools.ietf.org/html/rfc6960

12/24

http://tools.ietf.org/html/rfc6960

Response syntax

O0CSPResponse ::= SEQUENCE {
responseStatus OCSPResponseStatus,
responseBytes [0] EXPLICIT ResponseBytes OPTIONAL }
0CSPResponseStatus ::= ENUMERATED {
successful (0), --Response has valid confirmations
malformedRequest (1), --Illegal confirmation request
internalError (2), --Internal error in issuer
tryLater (3), --Try again later
--(4) is not used
sigRequired (6), --Must sign the request
unauthorized (6) --Request unauthorized
}
ResponseBytes ::= SEQUENCE {
responseType OBJECT IDENTIFIER, --id-pkix-ocsp-basic
response OCTET STRING }

® responseBytes provided only if responseStatus is “successful’

13/24

Response syntax

response ::= SEQUENCE {
tbsResponseData ResponseData,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING,
certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL }
ResponseData ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
responderID [1] Name,
producedAt GeneralizedTime,
responses SEQUENCE OF SEQUENCE {
certID CertID,
certStatus CertStatus,
thisUpdate GeneralizedTime,
nextUpdate [0] EXPLICIT GeneralizedTime OPTIONAL,

singleExtensions [1] EXPLICIT Extensions OPTIONAL }
[1] EXPLICIT Extensions OPTIONAL }

responseExtensions

CertStatus ::= CHOICE {
good [o] IMPLICIT NULL,
revoked [1] IMPLICIT SEQUENCE {

revocationTime GeneralizedTime,
revocationReason [0] EXPLICIT CRLReason OPTIONAL }

unknown [2] IMPLICIT NULL }
14/24

Who signs OCSP responses?

—‘.?iJ GlobalSign
_ﬁJ GlobalSign Domain Validation CA - G2

------ e

The key used to sign the response MUST belong to one of the following:
® CA who issued the certificate in question

® CA Authorized Responder who holds a specially marked certificate issued directly
by the CA, indicating that the responder may issue OCSP responses for that CA

® OCSP signing delegation SHALL be designated by the inclusion of
id-kp-0CSPSigning flag in an extendedKeyUsage extension of the responder’s

certificate
® How can the revocation status of this certificate be checked?

® Trusted Responder whose public key is trusted by the requester

® Trust must be established by some out-of-band means

15/24

How can the freshness of a response be checked?

Replay attack
Check the signed producedAt field
® What should be the allowed time difference?
® Reliance on the correctness of system clock
Include a random nonce in the OCSP request and check it in the response
® OCSP nonce extension (optional)
® Prevents replay attacks
® Vulnerable to downgrade attacks
OCSP response caching

® The current time between thisUpdate and nextUpdate

16 /24

Revocation checking by browsers

® CRLs are not supported
® Problems with OCSP:
® Privacy leakage

® |[nitial page loading slower
® Online checks are not, generally, performed by Chrome (uses CRLSets)

o [. L .
Firefox is not brave enough to fail-safe: €) ©Firefox | about:config
Preference Name ~ | Status Value
security.OCSP.enabled default 1
security.OCSP.require default False

® Solution is OCSP stapling (web server provides OCSP response to the browser)

® OCSP must-staple x509v3 extension to prevent downgrade attacks
® How fresh should the OCSP response be?

® Shorter certificate validity period may help
17 /24

Questions

Where can a relying party find the OCSP responder?
How is a certificate identified in the OCSP request?

How is the integrity of the OCSP response assured?

How can the freshness of the OCSP response be ensured?
How frequently should the validity status be checked?
What problem does the OCSP nonce extension solve?
What is a replay attack?

What is a downgrade attack?

18/24

Hypertext Transfer Protocol (HTTP)

® Application layer client-server, request-response protocol
® Runs over TCP (Transmission Control Protocol) port 80
Client request(http://example.com/hello)

GET /hello HTTP/1.1 POST /hello HTTP/1.1
Host: example.com Host: example.com
Connection: close Content-Length: 24

Connection: close

Server response: sending_this_binary_blob

HTTP/1.1 200 OK

Date: Thu, 25 Mar 2021 11:39:23 GMT
Server: Apache

Content-Length: 7033

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tran...

® Header lines must all end with <CR><LF> (b"\r\n")

® Header lines are separated from the body by an empty line

® POST requests have a non-empty request body
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

19/24

http://example.com/hello
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Sockets in Python

>>> import socket

>>> s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
>>> s.connect (("example.com", 80))

>>> s.send(b'GET / HTTP/1.1\r\nHost: example.com\r\n\r\n')
37

>>> s.recv(20)

b'HTTP/1.1 200 OK\r\nAge'

® recv() returns bytes that are available in the read buffer
recv() will wait if the read buffer is empty (blocking by default)
recv() will return O bytes if the connection is closed

® We must know how many bytes we must get
Correct way to read HTTP response:
® Read byte-by-byte until the full response header is received
® Extract body size from Content-Length header
® Read byte-by-byte until the full response body is received
® Avoid endless loops by checking the return value of recv()

http://docs.python.org/3/howto/sockets.html

20 /24

http://docs.python.org/3/howto/sockets.html

Task: OCSP checker

Implement a utility that queries an OCSP responder for a certificate's validity:

$./ocsp_check.py valid.pem

[+] URL of OCSP responder: http://ocsp.digicert.com

[+] Downloading issuer certificate from: http://cacerts.digicert.com/DigiCertSHA2HighAssuranceServer
[+] OCSP request for serial: 4610391752464174971427059223496372607

[+] Connecting to ocsp.digicert.com...

[+] OCSP producedAt: 2021-03-25 09:39:00

[+] OCSP thisUpdate: 2021-03-25 09:39:00

[+] OCSP nextUpdate: 2021-04-01 08:54:00

[+] OCSP status: good

$./ocsp_check.py revoked.pem

[+] URL of OCSP responder: http://evrootocsp.pkioverheid.nl

[+] Downloading issuer certificate from: http://cert.pkioverheid.nl/EVRootCA.cer
[+] OCSP request for serial: 10000616

[+] Connecting to evrootocsp.pkioverheid.nl...

[+] OCSP producedAt: 2021-03-25 12:00:56

[+] OCSP thisUpdate: 2021-03-25 12:00:56

[+] OCSP nextUpdate: 2021-03-27 12:00:56

[+] OCSP status: revoked

21/24

Task: OCSP checker

Extract OCSP responder's URL and CA certificate's URL from certificate’s
Authority Information Access (AlIA) extension

Send HTTP requests using Python sockets (the correct way! — see slide 20)
Use urlparse for easy URL parsing:

>>> from urllib.parse import urlparse

>>> urlparse("http://example.com/abc")

ParseResult (scheme='http', netloc='example.com', path='/abc', params='', query='', fragment='')
>>> urlparse("http://example.com/abc") .netloc

'example.com'’

Use regular expression to extract the length of an HTTP response body:

>>> import re
>>> re.search('content-length:\s*(\d+)\s', header.decode(), re.S+re.I).group(1)

Construct OCSP request using your ASN.1 DER encoder
To construct issuerKeyHash (CertID) encode subjectPublicKey bits to bytes
OCSP response parsing code is in the template

Signature verification checks can be skipped
22/24

Task: OCSP checker

OCSP requests must include “Content-Type: application/ocsp-request’
To debug HTTP errors use Wireshark's “Follow — TCP Stream” feature
ocsp.digicert.com returns “unauthorized” for unrecognized CertlDs

OCSP request for valid.pem:

$ dumpasnl valid.pem_ocsp_req

43

65

81:

20:
20:

16:

SEQUENCE {
SEQUENCE {
SEQUENCE {
SEQUENCE {
SEQUENCE {
SEQUENCE {
OBJECT IDENTIFIER shal (1 3 14 3 2 26)
NULL
}
OCTET STRING
CF 26 F5 18 FA C9 7E 8F 8C B3 42 EO 1C 2F 6A 10
9E 8E 5F OA
OCTET STRING
51 68 FF 90 AF 02 07 75 3C CC D9 65 64 62 A2 12
B8 59 72 3B
INTEGER 03 77 ED DC FA F8 BE 34 BA 23 3C 7C 2B 9A 31 7F

23/24

Comments

The wrong way of downloading HTTP response body:
® Reading the response in one go (wrong!):

body = s.recv(content_length)

“The receive calls normally return any data available, up to the requested
amount, rather than waiting for receipt of the full amount requested.”

¢ Reading until the socket is closed (wrong!):

body = b''
buf = s.recv(1024)
while len(buf):

buf = s.recv(1024)

body+= buf
After sending a response, an HTTP /1.1 server will wait for more
request/response exchanges, unless the header “Connection: close” was
specified by the client.

® s.recv() will hang until the timeout configured by the server is reached

24 /24

