Cryptographic hash function

A hash function is a function that takes an arbitrary block of data and returns a fixed-size unique bit string representation.

Related terms: hash, message digest, fingerprint, checksum
Cryptographic hash function

Properties:

- Easy to compute message digest (fast)
- Hard to restore message from digest (one-way)
- Hard to find messages with the same digest (collision resistant)
- Similar messages have very different digests (avalanche effect)

Attacks:

- Collision attack:
 \[\text{hash}(x) = \text{hash}(y) \mid \text{find any } x \text{ and } y \text{ such that } x \neq y \]
- (First) Preimage attack:
 \[\text{hash}(x) = h \mid \text{given } h, \text{ find any } x \]
- Second preimage attack:
 \[\text{hash}(x) = \text{hash}(y) \mid \text{given } x \text{ and } \text{hash}(x), \text{ find } y \neq x \]
“In cryptography, a **brute-force attack**, or exhaustive key search [..] might be used when it is not possible to take advantage of other weaknesses in an encryption system. It consists of systematically checking all possible keys or passwords until the correct one is found.”

E.g.: If a cryptosystem which has 56 bit key can be brute-forced using 2^{56} operations\(^1\) then the cryptosystem has security level of 56 bits.

- 2^{128} operations infeasible.
- 2^{80} become feasible.

Note, 2^{81} operations take twice the time of 2^{80} (2^{128} vs 2^{256}).

\(^1\)The term “operation” is not defined.
Cryptographic hash functions

- MD5 – 128 bit output
 - collision attack in 2^{20} (should be 2^{64})
 - Chosen-prefix collision attack
 - preimage and second preimage attack in 2^{73} (should be 2^{128})

- SHA-1 – 160 bit output
 - theoretical collision attack in 2^{51} (should be 2^{80})

- SHA-256 – 256 bit output

- SHA-512 – 512 bit output

- SHA-3 – 224/256/384/512 bit output
Data identification and integrity verification

- Integrity and authenticity of distributed files
- Disk imaging in digital forensics
- Distribution of MS Windows updates
- Remote file comparison (rsync)
Commitment scheme

Here is the proof of my clairvoyant powers – next U.S. president will $\text{SHA1}(x) = 766a14542a44867c453fa89c1a5b9bfb8554de20$

- **Binding** – due to second preimage resistance of SHA-1
- **Hiding** – due to one-wayness of SHA-1

```python
>>> for candidate in ['Joe Biden', 'Hillary Clinton', 'Howard Dean']:
...     print hashlib.sha1(candidate).hexdigest(), candidate
...     ...  
6d3786503b45e54262ff19544073c6bea4365b8c Joe Biden
766a14542a44867c453fa89c1a5b9bfb8554de20 Hillary Clinton
d18911e0e4a2a9e28f796cb5d32c3624c0dc02d0 Howard Dean
```

- **Improve hiding property by adding randomness**

```python
>>> prediction = 'Hillary Clinton|' + os.urandom(16)
>>> hashlib.sha1(prediction).hexdigest()
'5d3c5e1d600c41fac75c7e4438abed519d2aa0f8'
>>> prediction
'Hillary Clinton|xcb\x1e\xde\x95]\xda\xee\x10\x85\xf0b{\x02xcb\x8d\xf2'
```

- **Function must be secure against chosen-prefix collision attack**
How to generate random number from 0 to 99 over phone:

1. Alice: “my commitment value is
 2a459380709e2fe4ac2dae5733c73225ff6cfee1”

2. Bob: “my value is 84”

3. Alice: “my value was 65“

4. Bob checks if
 SHA1(“65”) = “2a459380709e2fe4ac2dae5733c73225ff6cfee1”
Random number generated:

 \[65 + 84 = 149 \mod 100 = 49 \]
Server-side password storage

LAW & DISORDER / CIVILIZATION & DISCONTENTS

Sony hacked yet again, plaintext passwords, e-mails, DOB posted

The hackers of Lulz Security have broken into yet more Sony websites, this ...

by Peter Bright - June 3 2011, 4:06am EEST

```
Hello , I am Idahc a Lebanonse Hacker

I was bored and I play the game of the year : "hacker vs Sony"
I hacked little database of 120 user with an sql injection.....

site: http://apps.pro.sony.eu/

username password mobile office email website
---

18 go9310231 34 csie.unav
- scul +44 7818 96 dam@3
- JafaAbd ourfar 145899
- sterChamp manter 1 1522
- arth +44 7887 83
- o alo +44 075927
- bern +34 630 163
- marie c68763c07 465cf
the Argthe +3069 +3069
- van vanbar +32 41
- loc locbon +44 665545
- OJohansen senato 91355
```

- Solution – store password hashes in database
 - Compare received plaintext password with hash from db
Server-side password storage

```sql
mysql> SELECT name, password FROM users;
+--------+------------------------------------------+
| name   | password                                |
|--------+------------------------------------------+
| Jeff   | b1b3773a05c0ed0176787a4f1574ff0075f7521e |
| Katrin | 2730f2c29354932611d328cfff0c9f01e10328ec |
| Mike   | e72e941812b920c908bba17798d5e27ebf627912 |
+--------+------------------------------------------+
```

Free Password Hash Cracker

Enter up to 10 hashes:

```
blb3773a05c0ed0176787a4f1574ff0075f7521e
2730f2c29354932611d328cfff0c9f01e10328ec
e72e941812b920c908bba17798d5e27ebf627912
```

Supports: LM, NTLM, md2, md4, md5, md5(sha5), md5 halfway, sha1, sha1(sha1_bin()), sha224, sha256, sha384, sha512, ripemd160, whirlpool, MySQL 4.1+

<table>
<thead>
<tr>
<th>Hash</th>
<th>Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>blb3773a05c0ed0176787a4f1574ff0075f7521e</td>
<td>sha1</td>
<td>qwerty</td>
</tr>
<tr>
<td>2730f2c29354932611d328cfff0c9f01e10328ec</td>
<td>sha1</td>
<td>hillary99</td>
</tr>
<tr>
<td>e72e941812b920c908bba17798d5e27ebf627912</td>
<td>Unknown</td>
<td>Not Found</td>
</tr>
</tbody>
</table>

- **Solution** – add password specific salt to the password

  ```python
db_salt = os.urandom(8).encode('hex')
db_password = hashlib.sha1(password + db_salt).hexdigest()
  ```
Server-side password storage

```sql
mysql> SELECT name, password, salt FROM users;
+--------+------------------------------------------+------------------+
| name  | password | salt |
|--------+------------------------------------------+------------------|
| Jeff   | 0771580376c18f7faeae9de565ff663eeff8c5cc | 7d3a5ccd7fc28aa9 |
| Katrin | 9c70ccbf02e5b8be46ebef149326d5d375895187 | df9372246bfcd8d0 |
| Mike   | 622cd81265db68c3b2616400f312c2a7096f5848 | 9a73764e2bf40db8 |
```

- Even the same passwords will have different hash
- No benefit in building password specific lookup table
Server-side password storage

- Brute-force cracking still possible:

  ```
  >>> hashlib.sha1('qwerty'+'7d3a5ccd7fc28aa9').hexdigest()
  '0771580376c18f7faeae9de565ff663eef8c5cc'
  ```

<table>
<thead>
<tr>
<th>Hash Algorithm</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>23070.7 M/s</td>
</tr>
<tr>
<td>SHA-1</td>
<td>7973.8 M/s</td>
</tr>
<tr>
<td>SHA-256</td>
<td>3110.2 M/s</td>
</tr>
<tr>
<td>SHA-512</td>
<td>267.1 M/s</td>
</tr>
<tr>
<td>NTLM</td>
<td>44035.3 M/s</td>
</tr>
<tr>
<td>DES</td>
<td>185.1 M/s</td>
</tr>
<tr>
<td>WPA/WPA2</td>
<td>348.0 k/s</td>
</tr>
</tbody>
</table>

Table: GPU speed

- Slow down brute-force by slowing down hash: \(h(h(h(h(x)))) \)
 - iterate hash for several rounds
 - known as “key stretching”

- Other key derivation functions:
 - PBKDF2 (attackable using GPU, ASIC, FPGA)
 - bcrypt (attackable using FPGA)
 - scrypt
Server-side password storage

Task: Calculate the security level of password hashes stored in a company X database. Company’s X password security policy requires password to be exactly 7 lowercase letters.

- Number of letters in English alphabet: 26
- Hash operations required
 - to brute-force 1-letter password: 26
 - to brute-force 2-letter password: 26×26
 - to brute-force 3-letter password: $26 \times 26 \times 26$
 - to brute-force 7-letter password: 26^7

$$26^7 = 8031810176 \approx 2^{32}$$

If using 2000 iterations:

$$2^{32} \times 2000 = 2^{32} \times 2^{11} \approx 2^{43}$$

Password storage has 43 bit security level.\(^2\)

\(^2\)Assuming user chooses letters randomly.
Hash-based PRNG

```python
import hashlib

def hash_prng(seed):
    i = 0
    while True:
        print hashlib.sha1(seed + str(i)).hexdigest()
        i += 1

hash_prng('fookey')
```

- Standardized construction – Hash-DRBG (NIST SP 800-90)
- If we have PRNG we can build stream cipher
• Linking-based time-stamping
Hash tree (Merkle tree)

- Easy to prove that a node belongs to the tree
- To prove that “Data block 3” is part of the tree h_{1-4}:
 - “Data block 3”
 - “h_4”
 - “h_{1-2}”
HMAC: hash-based Message Authentication Code

- Valid MAC cannot be produced without knowing the key
- Naive implementation $\text{hash(key + message)}$ is vulnerable!
 - Safe to use HMAC construction (RFC 2104)
- MAC does not guarantee freshness of the message
- Can MAC be used as a digital signature?
Questions

- What are the properties of hash function?
- What attacks a hash function must resist?
- What does the size of hash function output influences?
- What is a “security level” in cryptography?
- What is commitment scheme useful for?
- Why it is better to store password hashes in db?
- How can we increase security level of password hashing?
- How can we create encryption scheme from hash function?
- What is HMAC useful for?
Task: HMAC

Implement a tool that calculates and verifies integrity of a file.

$ python hmac.py
Usage:
-verify <filename>
-mac <filename>

$ python hmac.py -mac somefile
[?] Enter key: secretkey
[+] Calculated HMAC-SHA256: f5e94378cae5a3d0836e145f28807bb7076d28cd22b2481d45f92a904be9d2e8
[+] Writing HMAC DigestInfo to somefile.hmac

$ dumpasn1 somefile.hmac
 0 49: SEQUENCE {
 2 13: SEQUENCE {
 4 9: OBJECT IDENTIFIER sha-256 (2 16 840 1 101 3 4 2 1)
 15 0: NULL
 }
 17 32: OCTET STRING
 : F5 E9 43 78 CA E5 A3 D0 83 6E 14 5F 28 80 7B B7
 : 07 6D 28 CD 22 B2 48 1D 4F 92 4A 90 4B E9 D2 E8
 }

$ python hmac.py -verify somefile
[+] Reading HMAC DigestInfo from somefile.hmac
[+] HMAC-SHA256 digest: f5e94378cae5a3d0836e145f28807bb7076d28cd22b2481d45f92a904be9d2e8
[?] Enter key: secretkey
[+] Calculated HMAC-SHA256: f5e94378cae5a3d0836e145f28807bb7076d28cd22b2481d45f92a904be9d2e8
[+] HMAC verification successful!
DigestInfo

DigestInfo ::= SEQUENCE {
 digestAlgorithm AlgorithmIdentifier,
 digest OCTET STRING
}

AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL
}

$ dumpasn1 hashobject
0 33: SEQUENCE {
 2 9: SEQUENCE {
 4 5: OBJECT IDENTIFIER sha1 (1 3 14 3 2 26)
 11 0: NULL
 : }
13 20: OCTET STRING DA 39 A3 EE 5E 6B 4B 0D 32 55 BF ... :
 : }

- Standard structure to store algorithm and calculated digest
- Defined in PKCS#1 v1.5 signature creation (RFC 2313)
- Our hash functions have no parameters (ASN.1 NULL)
Task: HMAC

- Use python’s `hashlib` and `hmac` library
e.g., `hmac.new('somekey', None, hashlib.md5)`
- Must support hashing of huge files
 - Read file by 512 byte chunks
 - Feed chunks sequentially to `hash.update()`
 - Finally execute `hash.digest()`
- HMAC digest must be written to ”.hmac” file using DigestInfo
 ASN.1 structure
 - Use your own ASN.1 encoder
 - Please embed your encoder in your solution
 - For decoding use `pyasn1`
- MAC’er must use HMAC-SHA256
- Verifier must support HMAC-MD5, HMAC-SHA1 and HMAC-SHA256 (algorithm must be read from DigestInfo)
 - OID for MD5: 1.2.840.113549.2.5
 - OID for SHA1: 1.3.14.3.2.26
 - OID for SHA256: 2.16.840.1.101.3.4.2.1
$ echo -e -n \\x01 > file_sha256
$ python hmac.py -mac file_sha256
[?] Enter key: testkey
[+] Calculated HMAC-SHA256: a8be648dd48738b964391a00d4522fe988d10e3d5b2dbf8629a3dcbc0ce93ffd
[+] Writing HMAC DigestInfo to file_sha256.hmac
$ python hmac.py -verify file_sha256
[+] Reading HMAC DigestInfo from file_sha256.hmac
[+] HMAC-SHA256 digest: a8be648dd48738b964391a00d4522fe988d10e3d5b2dbf8629a3dcbc0ce93ffd
[?] Enter key: testkey
[+] Calculated HMAC-SHA256: a8be648dd48738b964391a00d4522fe988d10e3d5b2dbf8629a3dcbc0ce93ffd
[+] HMAC verification successful!

$ wget https://bitbucket.org/appcrypto/2016/src/master/03/hmac_testcases.tgz
$ tar -zxvf hmac_testcases.tgz

$ python hmac.py -verify file_md5
[+] Reading HMAC DigestInfo from file_md5.hmac
[+] HMAC-MD5 digest: 9e8031ab9d85a5fa0753344bc8c31a2f
[?] Enter key: secretkey
[+] Calculated HMAC-MD5: 9e8031ab9d85a5fa0753344bc8c31a2f
[+] HMAC verification successful!

$ python hmac.py -verify file_sha1
[+] Reading HMAC DigestInfo from file_sha1.hmac
[+] HMAC-SHA1 digest: ebfb4fc1a84d5f9fcbd1b7c8d5d625ac9f5b4c81
[?] Enter key: secretkey
[+] Calculated HMAC-SHA1: ebfb4fc1a84d5f9fcbd1b7c8d5d625ac9f5b4c81
[+] HMAC verification successful!

$ python hmac.py -verify file_sha256
[+] Reading HMAC DigestInfo from file_sha256.hmac
[+] HMAC-SHA256 digest: c40932474350a3f29a9f800e68b6429c64b7526800f8701ae9b4e73db8a3b700
[?] Enter key: secretkey
[+] Calculated HMAC-SHA256: 737f438db779461e6163aa236797099f08b154de6f5741843a549866ae57a5fd
[-] Wrong key or message has been manipulated!
pyasn1 library – decoding DER

$ sudo apt-get install python-pyasn1
$ python
>>> from pyasn1.codec.der import decoder
>>> der = open('asn1.der').read()
>>> decoder.decode(der)
(Sequence().setComponentByPosition(0, Set().setComponentByPosition(0,
 Integer(5)).setComponentByPosition(1,
 Integer(200)).setComponentByPosition(2,
 Integer(-129))).setComponentByPosition(1,
 Boolean('True')).setComponentByPosition(2,
 BitString("'010'B")).setComponentByPosition(3,
 OctetString(hexValue='0001020')).setComponentByPosition(4,
 Null('')).setComponentByPosition(5,
 ObjectIdentifier(1.2.840.113549.1)).setComponentByPosition(6,
 PrintableString('hello.')).setComponentByPosition(7,
 UTCTime('130123010900Z')), '')

>>> decoder.decode(der)[0][0][2]
Integer(-129)
>>> int(decoder.decode(der)[0][0][2])
-129
>>> decoder.decode(der)[0][0][2].__class__.__name__
'Integer'

• Can’t handle large (>3MB) DER encoded structures
• Can’t handle DER structures with implicit tagging