MTAT.07.017
Applied Cryptography

Bitcoin

University of Tartu

Spring 2014
“Bitcoin is a cryptocurrency whereby the creation and transfer of bitcoins is facilitated by an open-source peer-to-peer cryptographic protocol that functions without the intermediation of any central authority.”

http://en.wikipedia.org/wiki/Bitcoin
Traditional Banks

- Authenticates account holders and performs transactions
- Provides authenticity of transaction log
- Resolves disputes

How to do that without trusted central authority?
Bitcoin

- How to maintain transaction log without central authority?
 - Distribute to everyone over peer-to-peer network

- How to verify account holder’s intent without central authority?
 - Account holder signs transactions using digital signature

- How to bind account holder’s identity to public key?
 - Public key is an identity / account number itself
 - Anyone who can sign using the key can respend coins
 - Transactions are made between public keys

- How to verify transaction log integrity without central authority?
 - By majority vote using computing power
 - Requires active participation by honest majority

- How to get coins into the system?
 - Deterministic amount of money supplied through lottery
Transaction

Address is a hash of ECDSA public key
 • One who can produce the signature can claim the money

- Every input must be unlocked by a signature
- Transaction is valid if signatures are valid and inputs unspent
- Difference between inputs and outputs is a transaction fee
Proof-of-work System

Hashcash:

- Challenge: find a nonce such that first x bits of $\text{hash}(\text{randomchallenge}||\text{nonce})$ are zero bits.
- Solution requires brute force – 2^x tries on average
- Verification requires single hash operation $\text{hash}(\text{randomchallenge}||\text{nonce}) == "000000..."$?
- Non-interactive proof-of-work to fight spam
• Blocks are produced by miners who solve proof-of-work

• Chain with largest total difficulty is consensus chain
• Miner collects all transaction fees
• Miner earns 25 BTC “out of thin air”
 • Halved every 210’000 blocks (4 years)
• Proof-of-work difficulty recalculated every 2016 blocks
 • To produce one block in 10 minutes
 • Difficulty cannot change more than by a factor of 4
 • Current difficulty – 65 bits
Bitcoin P2P Network

- Node listens on TCP port 8333
- Node connects to few other nodes
- Sends to other peers:
 - new transactions
 - new blocks
 - new peer addresses
 - blocks (on request)
 - block headers (on request)
 - peer addresses (on request)
- Node must not relay invalid blocks/transactions
- Node must implement DoS protection
Anonymity

- All transactions are public and traceable
- Transactions occur between public keys
- Backward security and forward security needed
- Solution: mixing services

- Zerocoin – complete anonymity using zero-knowledge proofs
 - proof size 40KB, 2 seconds to verify
Security Assumptions

• ECDSA scheme and SHA256/RIPEMD160 are secure

• Attacker does not control majority of the hashpower
 • Attacker could execute double-spending attacks
 • Attacker could destroy the network
 • Attacker could gain more by following the rules
 • Hashpower not uniformly distributed
 • Litecoin’s use of scrypt()

• Attacker cannot partition the network or isolate participants
 • Sybil attack
 • Forked chains cannot be merged
 • Profit by isolating other miners
Requirements

- Participants are able to store and verify transaction log
 - Transaction log size is 17 GB (excluding indexes)
 - Thin clients must trust power nodes
 - Transaction log pruning never implemented
- Participants are rational
 - Indirect incentive to keep network healthy
- No one can impose regulation
 - Regulation needed to fix security flaws
 - Changes without unanimous support will fork blockchain
 - Bitcoin software developers have an advantage here
 - Regulation needed to stop bitcoin thefts

Bitcoin security depends on a lot more than cryptography
Mining Pools

- Rewards shared proportionally to participants contribution
- Contribution proved by submitting lower difficulty solutions
- What prevents participants from cheating?
Task: Proof-of-work solver

Implement proof-of-work solving tool.

$ python pow.py --difficulty 26
[+] Solved in 296.456492 sec (0.2112 Mhash/sec)
[+] Input: 41726e69732055540000000003bb67af
[+] Solution: 00000031fc8ad63fa6070e341ccddd55bc36ac0b1e94965f2a8bb624d1a51071
[+] Nonce: 62613423

- Hash function – SHA256(SHA256())
- Input – your identity + 8 byte counter
- Difficulty – number of zero leftmost bits in the solution
- Provide your output for difficulty 26 in source code comments
 - Must push at least 0.1 Mhash/sec on today's hardware
 - Looking for fastest python implementation

- Verification of proof-of-work:

 >>> input = '41726e69732055540000000003bb67af'.decode('hex')
 >>> input
 'Arnis UT\x00\x00\x00\x00\x03\xbbg\xaf'

 >>> hashlib.sha256(hashlib.sha256(input).digest()).hexdigest()
 '00000031fc8ad63fa6070e341ccddd55bc36ac0b1e94965f2a8bb624d1a51071'
Task: Proof-of-work solver

<table>
<thead>
<tr>
<th>Nr</th>
<th>Student</th>
<th>Mhash/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>T</td>
<td>0.4011</td>
</tr>
<tr>
<td>2.</td>
<td>M</td>
<td>0.3625</td>
</tr>
<tr>
<td>3.</td>
<td>J</td>
<td>0.3458</td>
</tr>
<tr>
<td>4.</td>
<td>B11208</td>
<td>0.3240</td>
</tr>
<tr>
<td>5.</td>
<td>B36763</td>
<td>0.3155</td>
</tr>
<tr>
<td>6.</td>
<td>B36764</td>
<td>0.2507</td>
</tr>
<tr>
<td>7.</td>
<td>B36758</td>
<td>0.2293</td>
</tr>
<tr>
<td>8.</td>
<td>B36774</td>
<td>0.2079</td>
</tr>
<tr>
<td>9.</td>
<td>A</td>
<td>0.2066</td>
</tr>
<tr>
<td>10.</td>
<td>B36781</td>
<td>0.1985</td>
</tr>
</tbody>
</table>

Table: Homework 13 performance top