Translating programs to circuits / MPC / ZK

Dec. 2021
Features of programs

- Arithmetic and logical operations
 - division, less-than, ...
- Control flow: If-then-else. Loops. Function calls...
- Reading and writing from / to computed addresses
- Integers \leftrightarrow bit-strings
 - Many different data types (booleans, integers, fix- and floating-point numbers)
- Random number generation
Computations as garbled circuits

_convert computation to a boolean circuit, as usual
- Like doing hardware design
- Except that XOR-gates are free
_random bit: let Garbler and Evaluator both enter a bit, XOR them

1-bit_adder\((x, y, c)\):
- \(s \leftarrow x \oplus y \oplus c\)
- \(c' \leftarrow ((x \oplus c) \land (y \oplus c)) \oplus c\)
 - \(c'\) should be the majority of \(x, y, c\)
 - \(c' = x \land y \oplus x \land c \oplus y \land c\)

1-bit_lessThan: \(\ell(x, y, c)\):
- \(c\) is the result of comparing less-significant parts of \(x\) and \(y\)
- return \((\neg(x \oplus c) \land (y \oplus c)) \oplus c\)

lessThan\(x_k \ldots x_1, y_k \ldots y_1\) =
\(\ell(x_k, y_k, \ell(x_{k-1}, y_{k-1}, \ldots, \ell(x_1, y_1, 0) \ldots))\)

Dec. 2021
if-then-else

- $mux(b, x, y) := \text{if } b \text{ then } x \text{ else } y$
 - $mux(b, x, y) \leftarrow y \oplus (b \land (x \oplus y))$
 - $mux(b, x, y) \leftarrow y + b \cdot (x - y)$ for integers

- Computing **if** b **then** P_1 **else** P_2:
 - Let V be the set of variables changed in at least one of P_1 and P_2
 - Compute both P_1 and P_2, rename $v \in V$ to v_i in P_i
 - Computing both P_1 and P_2 is a serious inefficiency compared to computations *in the clear*
 - Try to locate any commonalities in P_1 and P_2, and move them out of the branches
 - Compute $v := mux(b, v_1, v_2)$ for all $v \in V$

- Somewhat more is possible for garbled circuits
 - Will cover something near the end, when discussing ZK proofs
loops

- Only `for`-loops are supported
About arithmetic computations

- We consider the following (families of) protocol sets
 - “Sharemind”: additive sharing over 3 parties, rings \mathbb{Z}_{2^n}
 - Protocols for computing over fields \mathbb{Z}_p, either Shamir’s sharing or SPDZ-like
- Support linear operations, multiplication, (de)classification, random number generation
- Any computation can be made \textit{in the clear}
Generating a random bit

In computations over \mathbb{Z}_p

- Generate a random $[r] \in \mathbb{Z}_p$. Compute $s = \text{declassify}([r]^2)$. If $s = 0$, start over.
- Let $r' = \sqrt{s}$ and $[t] = (1/r') \cdot [r]$.
 - It is pre-agreed, which of two values of $\sqrt{\cdot}$ we take.
- We have $t \in \{-1, 1\}$. Mapping it to $\{0, 1\}$ is a linear operation.

In Sharemind

Just generate a random element of \mathbb{Z}_2
Sharemind: convert a bit to an integer

\[[u]_3 \]

\[P_3 \]

\(u \in \mathbb{Z}_2, \ v \in \mathbb{Z}_{2^n}, \ v = u \)

\[[u]_1 \]

\[P_1 \]

\[[u]_2 \]

\[P_2 \]

Dec. 2021

8
Sharemind: convert a bit to an integer

\[[u]_3 \]

\(P_3 \)

\(u \in \mathbb{Z}_2, \ \nu \in \mathbb{Z}_{2^n}, \ \nu = u \)

\[[u]_1 \]

\(P_1 \)

\(b_2, b_3 \leftarrow \mathbb{Z}_2, \ m_2, m_3 \leftarrow \mathbb{Z}_{2^n} \)

s.t. \(m_2 + m_3 = u_1 \oplus b_2 \oplus b_3 \)

\[[u]_2 \]

\(P_2 \)
Sharemind: convert a bit to an integer

\[u \in \mathbb{Z}_2, \quad v \in \mathbb{Z}_{2^n}, \quad v = u \]

\[b_2, b_3 \leftarrow \mathbb{Z}_2, \quad m_2, m_3 \leftarrow \mathbb{Z}_{2^n} \]

s.t. \[m_2 + m_3 = u_1 \oplus b_2 \oplus b_3 \]
Sharemind: convert a bit to an integer

\[u \in \mathbb{Z}_2, \ v \in \mathbb{Z}_{2^n}, \ v = u \]

\[b_2, b_3 \leftarrow \mathbb{Z}_2, \ m_2, m_3 \leftarrow \mathbb{Z}_{2^n} \]

\[\text{s.t. } m_2 + m_3 = u_1 \oplus b_2 \oplus b_3 \]
Sharemind: convert a bit to an integer

\[u \in \mathbb{Z}_2, \quad v \in \mathbb{Z}_{2^n}, \quad v = u \]

\[s \leftarrow [u]_2 \oplus [u]_3 \oplus b_2 \oplus b_3 \]

\[b_2, b_3 \leftarrow \mathbb{Z}_2, \quad m_2, m_3 \leftarrow \mathbb{Z}_{2^n} \]

\[\text{s.t. } m_2 + m_3 = u_1 \oplus b_2 \oplus b_3 \]
Sharemind: convert a bit to an integer

\[u \in \mathbb{Z}_2, \ v \in \mathbb{Z}_{2^n}, \ v = u \]

\[s \leftarrow [u]_2 \oplus [u]_3 \oplus b_2 \oplus b_3 \]

\[u = s \oplus (m_2 + m_3) \]

- I.e. \(m_2, m_3 \) additively share either \(u \) or \(\neg u = 1 - u \)
- Parties \(P_2 \) and \(P_3 \) know, which case it is
Sharemind: convert a bit to an integer

\(\begin{align*}
&b_3, m_3 \\
&[u]_1 \\
&P_1 & \Rightarrow & [u]_2 \\
&b_2, m_2 \\
&b_3 \leftarrow \mathbb{Z}_2, m_2, m_3 \leftarrow \mathbb{Z}_{2^n} \\
\text{s.t. } & m_2 + m_3 = u_1 \oplus b_2 \oplus b_3 \\
&P_3 & \Rightarrow & [u]_3 \\
&b_3 \oplus [u]_3 \\
\end{align*} \)

- \(u \in \mathbb{Z}_2, v \in \mathbb{Z}_{2^n}, v = u \)
- \(s \leftarrow [u]_2 \oplus [u]_3 \oplus b_2 \oplus b_3 \)
- \(u = s \oplus (m_2 + m_3) \)
 - I.e. \(m_2, m_3 \) additively share either \(u \) or \(-u = 1 - u \)
- Parties \(P_2 \) and \(P_3 \) know, which case it is
- \([v]_1 \leftarrow 0 \)
- \([v]_2 \leftarrow \text{mux}(s, 1 - m_2, m_2) \)
- \([v]_3 \leftarrow \text{mux}(s, -m_3, m_3) \)
Integer \rightarrow bit-string (“Bit extraction”)

For converting $\left[a\right]$, computations over \mathbb{Z}_p, where $\lceil \log p \rceil = n$

- Generate random bits $\left[r_0\right], \ldots, \left[r_{n-1}\right]$, let $\left[r\right] \leftarrow \sum_{i=0}^{n-1} 2^i \cdot \left[r_i\right]$
- Compare $\left(r_{n-1}, \ldots, r_0\right)$ against p, start over if not less
- Let $b = \text{declassify}(\left[a\right] - \left[r\right])$, think of it as bit-string (b_{n-1}, \ldots, b_0)
- Run the addition circuit for $(b_{n-1}, \ldots, b_0) + (\left[r\right]_{n-1}, \ldots, \left[r\right]_0)$

For converting $\left[a\right]$, in Sharemind

- Each party creates a bitwise sharing of his share of $\left[a\right]$
 - Let other parties’ shares be $\vec{0}$, then sharing is a no-op
- Use addition circuit to add them together
Bit-string \rightarrow integer in Sharemind

- Given $[b_0], \ldots, [b_{n-1}] \in \mathbb{Z}_2$, want to get $[a] \in \mathbb{Z}_{2^n}$, such that $a = \sum_{i=0}^{n-1} b_i \cdot 2^i$
- May convert each bit to \mathbb{Z}_{2^n}, but this is expensive: $O(n^2)$ effort
Bit-string \rightarrow integer in Sharemind

- Given $\llbracket b_0 \rrbracket, \ldots, \llbracket b_{n-1} \rrbracket \in \mathbb{Z}_2$, want to get $\llbracket a \rrbracket \in \mathbb{Z}_{2^n}$, such that $a = \sum_{i=0}^{n-1} b_i \cdot 2^i$
- May convert each bit to \mathbb{Z}_{2^n}, but this is expensive: $O(n^2)$ effort
- Generate random $\llbracket r \rrbracket \in \mathbb{Z}_{2^n}$, convert it into a bit-string
 - As on previous slide, let $\llbracket c_0 \rrbracket, \ldots, \llbracket c_{n-1} \rrbracket \in \mathbb{Z}_2$ be the result
- Run addition circuit on $(\llbracket b_0 \rrbracket, \ldots, \llbracket b_{n-1} \rrbracket)$ and $(\llbracket c_0 \rrbracket, \ldots, \llbracket c_{n-1} \rrbracket)$
- Declassify the result, let it be s_0, \ldots, s_{n-1}. Let $s = \sum_{i=0}^{n-1} s_i \cdot 2^i$
- Output $s - \llbracket r \rrbracket$
Equality check in Sharemind

- Given $[a] \in \mathbb{Z}_{2^n}$, want to get $[b] \in \mathbb{Z}_2$, indicating whether $a = 0$
- ReshareToTwo(by P_1):
 - P_1 sends random $r \in \mathbb{Z}_{2^n}$ to P_2 and $[a]_1 - r$ to P_3
 - Update shares: $[a]_1 := 0$, $[a]_2 := [a]_2 + r$, $[a]_3 := [a]_3 + [a]_1 - r$
- Let $x = [a]_2$ and $y = -[a]_3$. We have $a = 0$ iff $x = y$
- P_2 shares $x \in \mathbb{Z}_{2^n}$. P_3 shares $y \in \mathbb{Z}_{2^n}$. Result: $[x_0], [y_0], \ldots, [x_{n-1}], [y_{n-1}] \in \mathbb{Z}_2$
 - Other parties’ shares are $\vec{0}$. Hence a no-op
- Compute $[b] = \bigwedge_{i=0}^{n-1} [x_i] \oplus [y_i]$
Equality check with less rounds

- P_2 has $x \in \mathbb{Z}_{2^n}$. P_3 has $y \in \mathbb{Z}_{2^n}$. Find $[b]$, where $b = (x \neq y)$
- Compute $[z_i] = [x_i] \oplus [y_i]$ (i-th bit of x and y; $1 \leq i \leq n$)
- For each i: convert $[z_i]$ into $[z'_i]$, where $z_i \in \mathbb{Z}_2$, $z'_i \in \mathbb{Z}_k$, $k = 2^{\lceil \log(n+1) \rceil}$
- Check whether $\sum_i [z'_i]$ is equal to 0.
 - Apply **ReshareToTwo** to $\sum_i [z'_i]$ (already done)
 - Go to the start of the slide
 - If k is very small, then drop out of recursion
- This protocol may be more useful for two-party computation based on secret-sharing and OT
Less-than comparisons

- Bit extraction + evaluation of comparison circuit
- Also, pre-computations based on FSS
 - Two-party computation based on secret-sharing and OT
Sorting

- Quicksort is a nice sorting algorithm
 - $O(m \log m)$ comparisons, $O(\log m)$ parallel complexity (in average case)
 - Worst case is bad, but...

- But control flow and memory access patterns of Quicksort and other algorithms depend on the results of previous comparisons
Sorting networks

Comparator
- A “node” with two inputs and two outputs
- Given inputs x, y, puts $\min(x, y)$ to first output and $\max(x, y)$ to second output
- We can build networks with m inputs and outputs from a bunch of comparators
 - Internally, all fan-ins and fan-outs are 1
- Correctly designed network outputs its inputs in sorted order
- Best sorting networks have ca. $m \log^2 m$ comparisons, with $O(\log^2 m)$ parallel complexity
- Memory access pattern (and control flow) is public
How about quicksort?

- Suppose the order of elements in vector \vec{v} does not need protection
- We could then use more efficient sorting algorithms
- Idea:
 1. Apply a random permutation of \vec{v}
 - Unknown to any single computing party
 2. Run quicksort, declassifying all comparison results
- If all elements in $\lceil \vec{v} \rceil$ are different, then the comparison results are the same as for a random vector
- After applying a random permutation, the worst case of quicksort does not apply
Private shuffle

\[\begin{array}{ccc}
[a_1] & [a_2] & [a_3] \\
[a_4] & [a_5] & [a_6] \\
[a_7] & [a_8]
\end{array} \]

How to represent \(\sigma \) and do the shuffle if \(\sigma \) itself is private?

\[\sigma = \sigma_1 \circ \sigma_2 \circ \sigma_3 ; \]
\(\sigma_1, \sigma_2, \sigma_3 \) are random elements of \(S_m \).

\[\sigma_i = a_{\sigma(i)} \] for all \(i \in \{1, \ldots, m\} \).
Private shuffle

\[\sigma_i = a_\sigma(i) \text{ for all } i \in \{1, \ldots, m\}\]

\(\sigma\) is provided by an input party or generated randomly. How to represent \(\sigma\) and do the shuffle if \(\sigma\) itself is private?

\[\sigma = \sigma_1 \circ \sigma_2 \circ \sigma_3; \sigma_1, \sigma_2, \sigma_3 \text{ are random elements of } S_m.\]
Private shuffle

\[\sigma(i) = a(b) \text{ for all } i \in \{1, \ldots, m\} \]
Private shuffle

\[a_1 \rightarrow \sigma, \quad b_1 \]
\[a_2 \rightarrow \sigma, \quad b_2 \]
\[a_3 \rightarrow \sigma, \quad b_3 \]
\[a_4 \rightarrow \sigma, \quad b_4 \]
\[a_5 \rightarrow \sigma, \quad b_5 \]
\[a_6 \rightarrow \sigma, \quad b_6 \]
\[a_7 \rightarrow \sigma, \quad b_7 \]
\[a_8 \rightarrow \sigma, \quad b_8 \]

- \(b_i = a_{\sigma(i)} \) for all \(i \in \{1, \ldots, m\} \)
- \(\sigma \in S_m \) is provided by an input party
 - ... or generated randomly
- How to represent \(\sigma \) and do the shuffle if \(\sigma \) itself is private?
Private shuffle

\[[a_1] \quad [b_1] \]
\[[a_2] \quad [b_2] \]
\[[a_3] \quad [b_3] \]
\[[a_4] \quad [b_4] \]
\[[a_5] \quad [b_5] \]
\[[a_6] \quad [b_6] \]
\[[a_7] \quad [b_7] \]
\[[a_8] \quad [b_8] \]

- \[b_i = a_{\sigma(i)} \] for all \(i \in \{1, \ldots, m\} \)
- \(\sigma \in S_m \) is provided by an input party
 - ... or generated randomly
- How to represent \(\sigma \) and do the shuffle if \(\sigma \) itself is private?
- \([[\sigma]] = ((\sigma_1, \sigma_2), (\sigma_2, \sigma_3), (\sigma_3, \sigma_1)) \)
 - \(\sigma = \sigma_1 \circ \sigma_2 \circ \sigma_3 \);
 - \(\sigma_1, \sigma_2, \sigma_3 \) are random elements of \(S_m \).
Private shuffle

Dec. 2021
Private shuffle

\[\sigma \]

\(\begin{array}{c}
[a_1] \\
[a_2] \\
[a_3] \\
[a_4] \\
[a_5] \\
[a_6] \\
[a_7] \\
[a_8] \\
\end{array} \quad \begin{array}{c}
[b_1] \\
[b_2] \\
[b_3] \\
[b_4] \\
[b_5] \\
[b_6] \\
[b_7] \\
[b_8] \\
\end{array} \]

unknown to \(\mathcal{C}_2 \)

unknown to \(\mathcal{C}_3 \)

unknown to \(\mathcal{C}_1 \)
Shuffling protocol

\[[\tilde{a}]_1 \]
\[\mathcal{CP}_1 \]
\[\sigma_1, \sigma_2 \]

\[[\tilde{a}]_2 \]
\[\mathcal{CP}_2 \]
\[\sigma_2, \sigma_3 \]

\[[\tilde{a}]_3 \]
\[\mathcal{CP}_3 \]
\[\sigma_3, \sigma_1 \]
Shuffling protocol

\[\sigma_3, \sigma_1 \]

\[[\bar{a}]_3 \]

\[\bar{r}_1 \]

\[[\bar{a}]_2 - \bar{r}_1 \]

\[\sigma_1, \sigma_2 \]

\[[\bar{a}]_1 \]

\[\bar{r}_1 \]

\[CP_1 \]

\[CP_2 \]

\[\sigma_2, \sigma_3 \]

\[CP_3 \]
Shuffling protocol

\[[\vec{a}]_1 := [\vec{a}]_1 + \vec{r}_1 \]

\[[\vec{a}]_2 := [\vec{a}]_2 - \vec{r}_1 \]

\[[\vec{a}]_3 := [\vec{a}]_3 + [\vec{a}]_2 - \vec{r}_1 \]
Shuffling protocol

Party \mathcal{CP}_i shuffles $[\bar{a}]_i$ using σ_1

$[\bar{a}]_1$

$[\bar{a}]_2 = \vec{0}$
Shuffling protocol

CP

1

CP

2

CP

3

\[\vec{a} \]

1

\[\vec{a} \]

2

\[\vec{a} \]

3

\[\sigma_3, \sigma_1 \]

\[\sigma_2, \sigma_3 \]

\[\vec{r}_2 \]

\[\vec{a}_3 - \vec{r}_2 \]
Shuffling protocol

\[\mathcal{CP}_3 \]

\[\sigma_3, \sigma_1 \]

\[[\vec{a}]_3 := \vec{0} \]

\[[\vec{a}]_1 := [\vec{a}]_1 + [\vec{a}]_3 - \vec{r}_2 \]

\[\vec{r}_2 \]

\[[\vec{a}]_2 := [\vec{a}]_2 + \vec{r}_2 \]

\[\mathcal{CP}_1 \]

\[\sigma_1, \sigma_2 \]

\[\mathcal{CP}_2 \]

\[\sigma_2, \sigma_3 \]
Shuffling protocol

$[\bar{a}]_3 = \bar{0}$

Party CP$_i$ shuffles $[\bar{a}]_i$ using σ_2

Dec. 2021
Shuffling protocol

\[
\begin{align*}
\mathcal{CP}_1 & \xrightarrow{\sigma_1, \sigma_2} \mathcal{CP}_2 \\
\mathcal{CP}_3 & \xrightarrow{\sigma_3, \sigma_1} \mathcal{CP}_3
\end{align*}
\]
Shuffling protocol

\[
[\bar{a}]_3 := [\bar{a}]_3 + [\bar{a}]_1 - \bar{r}_3
\]

\[
[\bar{a}]_1 := \bar{0}
\]

\[
[\bar{a}]_2 := [\bar{a}]_2 + \bar{r}_3
\]
Shuffling protocol

\[\boxed{\vec{a}}_1 = \vec{0} \]

\[\boxed{\vec{a}}_2 \]

\[\boxed{\vec{a}}_3 \]

Party \(CP_i \) shuffles \(\boxed{\vec{a}}_i \) using \(\sigma_3 \)
Analysis of shuffle

- There is an access structure $\mathcal{A} \subseteq 2^{\{P_1, \ldots, P_n\}}$ (containing privileged sets)
- Each σ_i is known by some privileged set of parties
- Each non-privileged set of parties must not know some σ_i
There is an access structure $\mathcal{A} \subseteq 2^{\{P_1, \ldots, P_n\}}$ (containing privileged sets)

Each σ_i is known by some privileged set of parties

Each non-privileged set of parties must not know some σ_i

May have as many σ_i-s, as there are minimal privileged sets. In general, the complexity is $2^{O(n)}$

On the other hand, the complexity is linear in the length of shuffled vector

The same protocol also works for Shamir-shared data
There is private value $[k]$. We know that $0 \leq k < \ell$
Want to obtain vector $(\langle c_0 \rangle, \ldots, \langle c_{\ell-1} \rangle)$, where $c_k = 1$, $c_i = 0$ if $i \neq k$
Characteristic vector (Sharemind)

- There is private value $[k]$. We know that $0 \leq k < \ell$
- Want to obtain vector $([c_0], \ldots, [c_{\ell-1}])$, where $c_k = 1$, $c_i = 0$ if $i \neq k$
- Let $[k]$ be shared over \mathbb{Z}_ℓ, in replicated manner: $((k_2, k_3), (k_1, k_3), (k_1, k_2))$
- Think of each k_i as an element of S_ℓ:
 - k_i, applied to a vector \vec{v}, rotates it k_i positions to the right
 - Hence the application of $k_1 \circ k_2 \circ k_3$ rotates by k positions
- Apply the shuffling protocol, starting from vector $(1, 0, 0, \ldots, 0)$
 - As the initial vector is public, the whole protocol simplifies somewhat
Private array access

Private read
Given $\vec{a} = ([a_1], [a_2], \ldots, [a_m])$ and $[k]$, find $[a_k]$

Private write
- Given $\vec{a} = ([a_1], \ldots, [a_m]), [k]$ and $[x]$
- Find $\vec{b} = ([b_1], \ldots, [b_m])$, where $b_k = x$ and $b_j = a_j$ for $j \neq k$
Private array access

Private read
Given $\bar{a} = ([a_1], [a_2], \ldots, [a_m])$ and $[k]$, find $[a_k]$.

Private write
- Given $\bar{a} = ([a_1], \ldots, [a_m]), [k]$ and $[x]$
- Find $\bar{b} = ([b_1], \ldots, [b_m])$, where $b_k = x$ and $b_j = a_j$ for $j \neq k$

Oblivious reads using characteristic vectors
- Turn $[k]$ to a characteristic vector $([c_1], \ldots, [c_m])$
 - For simplicity, assume that m is a power of 2
- Compute the scalar product of \bar{a} and \bar{c}.
Parallel reads and writes

Parallel read from a vector

\[\text{read}(\vec{a}_1, \ldots, \vec{a}_n; \vec{i}_1, \ldots, \vec{i}_m) \mapsto (\vec{a}_{i_1}, \ldots, \vec{a}_{i_m}) \]

Parallel write to a vector

\[\text{write}(\vec{a}_1, \ldots, \vec{a}_n; \vec{i}_1, \ldots, \vec{i}_m; \vec{v}_1, \ldots, \vec{v}_m) \mapsto (\vec{b}_1, \ldots, \vec{b}_n), \]

where \(\vec{b} \) is \(\vec{a} \) after the writing, i.e.

\[b_j = \begin{cases} a_j, & \text{if } j \notin \{i_1, \ldots, i_m\} \\ v_k, & \text{if } i_k = j \end{cases} \]
Parallel reads and writes

Parallel read from a vector

\[
\text{read}(\langle a_1, \ldots, a_n; i_1, \ldots, i_m \rangle) \mapsto (a_{i_1}, \ldots, a_{i_m})
\]

Parallel write to a vector

\[
\text{write}(\langle a_1, \ldots, a_n; i_1, \ldots, i_m; v_1, \ldots, v_m; p_1, \ldots, p_m \rangle) \mapsto (b_1, \ldots, b_n),
\]

where \(\langle \bar{b} \rangle \) is \(\langle \bar{a} \rangle \) after the writing, i.e.

\[
b_j = \begin{cases}
a_j, & \text{if } j \notin \{i_1, \ldots, i_m\} \\
v_k, & \text{if } i_k = j \text{ and } p_k = \min\{p_\ell \mid i_\ell = j\} \end{cases}
\]
Parallel oblivious reading

\[a \]

\[
\begin{array}{c}
1 \\
4 \\
9 \\
16 \\
25 \\
36 \\
\end{array}
\]

Let \(\vec{x} = (x_1, \ldots, x_n) \)

Define \(\vec{y} = (y_1, \ldots, y_n) \) by

\[y_1 = x_1, \quad y_i = y_{i-1} + x_i \]

\(\vec{y} \) is the prefix-sum of \(\vec{x} \)

Inverse: \[x_1 = y_1, \quad x_i = y_i - y_{i-1} \]
Parallel oblivious reading

$$\sigma^{-1} \cdot a' = \text{prefixsum}^{-1}(a)$$

$$\sigma \cdot w = \text{sort}(i)$$

$$a' = \text{prefixsum}(w)$$

$$\sigma \cdot a' = \text{prefixsum}(w)$$
Parallel oblivious reading

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Prefix-sums and their inverses

- Let $\vec{x} = (x_1, \ldots, x_n)$
- Define $\vec{y} = (y_1, \ldots, y_n)$ by
 - $y_1 = x_1$
 - $y_i = y_{i-1} + x_i$
- \vec{y} is the prefix-sum of \vec{x}
- Inverse:
 - $x_1 = y_1$
 - $x_i = y_i - y_{i-1}$

$w = \text{prefixsum}^{-1}(a)$
Parallel oblivious reading

\[w = \text{prefixsum}^{-1}(a) \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>36</td>
<td>11</td>
<td>6</td>
</tr>
</tbody>
</table>

Prefix-sums and their inverses

Let \(\vec{x} = (x_1, \ldots, x_n) \)

Define \(\vec{y} = (y_1, \ldots, y_n) \) by

\[y_1 = x_1 \]
\[y_i = y_{i-1} + x_i \]

\(\vec{y} \) is the prefix-sum of \(\vec{x} \)

Inverse:

\[x_1 = y_1 \]
\[x_i = y_i - y_{i-1} \]
Parallel oblivious reading

\[
\begin{array}{ccc}
a & w & i \\
1 & 1 & 1 \\
4 & 3 & 2 \\
9 & 5 & 3 \\
16 & 7 & 4 \\
25 & 9 & 5 \\
36 & 11 & 6 \\
0 & 3 & \\
0 & 2 & \\
0 & 6 & \\
0 & 3 & \\
0 & 4 & \\
\end{array}
\]

\[w = \text{prefixsum}^{-1}(a)\]
Parallel oblivious reading

\[
\begin{align*}
\vec{x} &= (x_1, \ldots, x_n) \\
\vec{y} &= (y_1, \ldots, y_n) \\
\end{align*}
\]

Define \(\vec{y} \) by
\[
\begin{align*}
y_1 &= x_1 \\
y_i &= y_{i-1} + x_i \\
\end{align*}
\]
\(\vec{y} \) is the prefix-sum of \(\vec{x} \)

Inverse:
\[
\begin{align*}
x_1 &= y_1 \\
x_i &= y_i - y_{i-1} \\
\end{align*}
\]

\[
w = \text{prefixsum}^{-1}(a)
\]
\[
\sigma = \text{sort}(i)
\]
Parallel oblivious reading

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>w</td>
<td>i</td>
<td>a</td>
<td>w</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>6</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

$w = \text{prefixsum}^{-1}(a)$

$\sigma = \text{sort}(i)$

apply σ to w
Parallel oblivious reading

\[
\begin{array}{ccc}
1 & 1 & 1 \\
4 & 3 & 2 \\
9 & 5 & 3 \\
16 & 7 & 4 \\
25 & 9 & 5 \\
36 & 11 & 6 \\
\end{array}
\quad \Rightarrow \quad
\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 4 \\
2 & 0 & 4 \\
3 & 5 & 9 \\
3 & 0 & 9 \\
3 & 0 & 9 \\
\end{array}
\]

Let
\[
\vec{x} = (x_1, \ldots, x_n)
\]

Define \(\vec{y} = (y_1, \ldots, y_n)\) by
\[
y_1 = x_1 \\
y_i = y_{i-1} + x_i
\]

\(\vec{y}\) is the prefix-sum of \(\vec{x}\)

Inverse:
\[
x_1 = y_1 \\
x_i = y_i - y_{i-1}
\]

\(w = \text{prefixsum}^{-1}(a)\)

\(\sigma = \text{sort}(i)\)

apply \(\sigma\) to \(w\)

\(a' = \text{prefixsum}(w)\)
Parallel oblivious reading

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>w</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>11</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>w</th>
<th>a'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

Let \(\vec{x} = (x_1, \ldots, x_n) \)

Define \(\vec{y} = (y_1, \ldots, y_n) \) by

\[
y_1 = x_1 \\
y_i = y_{i-1} + x_i
\]

\(\vec{y} \) is the prefix-sum of \(\vec{x} \)

Inverse:

\[
x_1 = y_1 \\
x_i = y_i - y_{i-1}
\]

\(w = \text{prefixsum}^{-1}(a) \)

\(\sigma = \text{sort}(i) \)

apply \(\sigma \) to \(w \)

\(a' = \text{prefixsum}(w) \)

apply \(\sigma^{-1} \) to \(a' \)
Complexity of reading

- Sorting: $O((m + n) \log(m + n))$ in $O(\log(m + n))$ rounds
- The rest is $O(m + n)$ in $O(1)$ rounds

Overhead of a single read

$O(\log n)$, if $m = \Theta(n)$

If $m \gg n$, then run several parallel reads in parallel

Read m values from array of length n
Complexity of reading

- Sorting: \(O((m + n) \log (m + n)) \) in \(O(\log (m + n)) \) rounds
- The rest is \(O(m + n) \) in \(O(1) \) rounds

Overhead of a single read

\(O(\log n) \), if \(m = \Theta(n) \)
If \(m \gg n \), then run several parallel reads in parallel

Application-level optimization

- Sorting requires \((i_1, \ldots, i_m)\) and \(n \). It does not require \(\vec{a} \)
- If there are reads from several arrays according to the same indices, then we can sort only once

Read \(m \) values from array of length \(n \)
Parallel oblivious writing

\[
a = \begin{bmatrix}
1 \\
4 \\
9 \\
16 \\
25 \\
36
\end{bmatrix}
\]
Parallel oblivious writing

<table>
<thead>
<tr>
<th>a</th>
<th>i</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
Parallel oblivious writing

<table>
<thead>
<tr>
<th>a</th>
<th>i</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>99</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>99</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>99</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>99</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
Parallel oblivious writing

<table>
<thead>
<tr>
<th>a</th>
<th>i</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>99</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>99</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>99</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>99</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

\[a_{i^n} = (i_n - 1) \]

<table>
<thead>
<tr>
<th>a</th>
<th>i</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>99</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>99</td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>99</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>99</td>
</tr>
</tbody>
</table>

sort by \(i; p\)
Parallel oblivious writing

\[
\begin{array}{ccc}
\alpha & i & p \\
1 & 1 & 99 \\
4 & 2 & 99 \\
9 & 3 & 99 \\
16 & 4 & 99 \\
25 & 5 & 99 \\
36 & 6 & 99 \\
17 & 3 & 4 \\
8 & 4 & 3 \\
21 & 3 & 5 \\
5 & 2 & 1 \\
33 & 5 & 2 \\
\end{array}
\]

\[
\begin{array}{cccc}
a & i & p & j \\
1 & 1 & 99 & 0 \\
5 & 2 & 1 & 0 \\
4 & 2 & 99 & 1 \\
17 & 3 & 4 & 0 \\
21 & 3 & 5 & 1 \\
9 & 3 & 99 & 1 \\
8 & 4 & 3 & 0 \\
16 & 4 & 99 & 1 \\
33 & 5 & 2 & 0 \\
25 & 5 & 99 & 1 \\
36 & 6 & 99 & 0 \\
\end{array}
\]

sort by \(i; p\)

\[j_n = (i_n \equiv i_{n-1}) \]

\[j_1 = 0 \]
Parallel oblivious writing

<table>
<thead>
<tr>
<th>v</th>
<th>a</th>
<th>i</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>a</th>
<th>i</th>
<th>p</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>99</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>99</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>99</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>99</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>99</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>99</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

Sort by $i; p$

$$j_n = (i_n \equiv i_{n-1})$$

$$j_1 = 0$$

Sort by j
Complexity of writing

- First sort: $O((m + n) \log(m + n))$ in $O(\log(m + n))$ rounds
- Second sort (bits): $O(m + n)$ in $O(1)$ rounds
- The rest is $O(m + n)$ in $O(1)$ rounds
- Same overhead as for reading

Application-level optimization

- First sort requires $([i_1], \ldots, [i_m]), ([p_1], \ldots, [p_m])$ and n
- First sort does not require $[\vec{a}]$ and $[\vec{v}]$
- If there are writes to several arrays according to the same indices, then may sort only once

Write m values to array of length n
Counting sort (by single bit)

<table>
<thead>
<tr>
<th>a</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
</tr>
</tbody>
</table>
Counting sort (by single bit)

\[jj_n = b2l(j_n) \]
Counting sort (by single bit)

\[\langle a, j, jj, \bar{jj} \rangle\]

\begin{array}{cccc}
1 & 1 & 1 & 0 \\
4 & 0 & 0 & 1 \\
9 & 0 & 0 & 1 \\
16 & 1 & 1 & 0 \\
25 & 1 & 1 & 0 \\
36 & 0 & 0 & 1 \\
17 & 1 & 1 & 0 \\
8 & 0 & 0 & 1 \\
21 & 0 & 0 & 1 \\
5 & 0 & 0 & 1 \\
33 & 1 & 1 & 0 \\
\end{array}

\[jj_n = \text{b2l}(j_n)\]

\[\bar{jj}_n = 1 - jj_n\]
Counting sort (by single bit)

<table>
<thead>
<tr>
<th></th>
<th>j</th>
<th>jj</th>
<th>jj</th>
<th>jj</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
jj_n &= \text{b2l}(j_n) \\
\bar{jj}_n &= 1 - jj_n \\
\bar{c} &= \text{prefixsum}(\bar{jj})
\end{align*}
\]
Counting sort (by single bit)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
a & j & jj & \overline{jj} & \vec{c} & c \\
\hline
1 & 1 & 1 & 0 & 0 & 7 \\
4 & 0 & 0 & 1 & 1 & 8 \\
9 & 0 & 0 & 1 & 2 & 8 \\
16 & 1 & 1 & 0 & 2 & 8 \\
25 & 1 & 1 & 0 & 2 & 9 \\
36 & 0 & 0 & 1 & 3 & 10 \\
17 & 1 & 1 & 0 & 3 & 10 \\
8 & 0 & 0 & 1 & 4 & 11 \\
21 & 0 & 0 & 1 & 5 & 11 \\
5 & 0 & 0 & 1 & 6 & 11 \\
33 & 1 & 1 & 0 & 6 & 11 \\
\hline
\end{array}
\]

\[
\overline{jj}_n = b2l(j_n)
\]

\[
\vec{c} = \text{prefixsum}(\overline{jj})
\]

\[
\vec{c} = \text{prefixsum}(\overline{jj})
\]
Counting sort (by single bit)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

\[\overline{jj}_n = b2l(j_n) \]
\[\overline{j\bar{j}}_n = 1 - jj_n \]
\[\overline{\overline{c}} = \text{prefixsum}(\overline{jj}) \]
\[\overline{\overline{c}} = \text{prefixsum}(\overline{jj}) \]
\[p_n = jj_n \oplus c_n : \overline{c}_n \]
Counting sort (by single bit)

<table>
<thead>
<tr>
<th></th>
<th>j</th>
<th>jj</th>
<th>jj</th>
<th>c</th>
<th>c</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Random shuffle

\[
jj_n = b2l(j_n)
\]
\[
\overline{jj}_n = 1 - jj_n
\]
\[
\overline{c} = \text{prefixsum}(\overline{jj})
\]
\[
\overline{c} = \text{prefixsum}(jj)
\]
\[
p_n = jj_n \oplus c_n \odot \overline{c}_n
\]
shuffle \(\vec{a}, \vec{p}\)
Counting sort (by single bit)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

\[jj_n = b2l(j_n) \]
\[jj_n = 1 - jj_n \]
\[\bar{c} = \text{prefixsum}(\bar{jj}) \]
\[\bar{c} = \text{prefixsum}(\bar{jj}) \]

\[p_n = jj_n \oplus c_n : \bar{c}_n \]
shuffle \(\bar{a}, \bar{p} \)
declassify \(\bar{p} \)
Counting sort (by single bit)

\[
\begin{array}{cccccccc}
 a & j & jj & \overline{jj} & c & c & p \\
1 & 1 & 1 & 0 & 0 & 7 & 7 \\
4 & 0 & 0 & 1 & 1 & 8 & 1 \\
9 & 0 & 0 & 1 & 2 & 8 & 2 \\
16 & 1 & 1 & 0 & 2 & 8 & 8 \\
25 & 1 & 1 & 0 & 2 & 9 & 9 \\
36 & 0 & 0 & 1 & 3 & 10 & 3 \\
17 & 1 & 1 & 0 & 3 & 10 & 10 \\
8 & 0 & 0 & 1 & 4 & 11 & 4 \\
21 & 0 & 0 & 1 & 5 & 11 & 5 \\
5 & 0 & 0 & 1 & 6 & 11 & 6 \\
33 & 1 & 1 & 0 & 6 & 11 & 11 \\
\end{array}
\]

\[
\begin{array}{ccc}
a & p & a \\
36 & 3 & 4 \\
16 & 8 & 9 \\
33 & 11 & 36 \\
9 & 2 & 8 \\
25 & 9 & 21 \\
17 & 10 & 5 \\
4 & 1 & 1 \\
5 & 6 & 16 \\
1 & 7 & 25 \\
21 & 5 & 17 \\
8 & 4 & 33 \\
\end{array}
\]

\[\overline{jj}_n = b2I(j_n)\]
\[\overline{jj}_n = 1 - jj_n\]
\[\tilde{c} = \text{prefixsum}(\overline{jj})\]
\[\tilde{c} = \text{prefixsum}(\overline{jj})\]
\[p_n = jj_n ? c_n : \overline{c}_n\]
shuffle \(\tilde{a}, \tilde{p}\)
declassify \(\tilde{p}\)
reorder \(\tilde{a}\) by \(\tilde{p}\)
Up-conversion in Sharemind

- Given $[a] \in \mathbb{Z}_{2^n}$, want to obtain $[a] \in \mathbb{Z}_{2^m}$, where $m > n$
- Just left-filling the shares $[a]_i$ with zeroes does not work
 - This would give a sharing of a, or $a + 2^n$, or $a + 2 \cdot 2^n$
 - Start with \textbf{ReshareToTwo}. Then $a + 2 \cdot 2^n$ does not happen
- We need to find the “overflow” $[\lambda] \in \mathbb{Z}_2$ of the sharing $[a]$
 - We can then subtract $2^n \cdot [\lambda]_{2^m-n}$ from $[a]_{2^m}$
Finding the overflow of $[a]$, shared between P_2 and P_3

- P_2 has $a_2 \in \mathbb{Z}_{2^n}$. P_3 has $a_3 \in \mathbb{Z}_{2^n}$. Overflows, iff $a_2 \geq 2^n - a_3$
- Hence we have to compare a_2 and $-a_3$
 - Because $2^n - a_3 = (-a_3) \mod 2^n$
 - ... unless $a_3 = 0$, which has to be handled separately
- The parties execute boolean circuit for “greater or equal”, comparing a_2 and $-a_3$
- They obtain $[\lambda] \in \mathbb{Z}_2$
- If $a_3 = 0$, then P_3 flips his share in $[\lambda]$
 - Comparison would return “true”. Correct answer is “false”
Right-shift in Sharemind

- Given \([a] \in \mathbb{Z}_{2^n}\), find \([a/2^k]\)
- Chop off the last \(k\) bits of shares, and add the overflow of the last \(k\) bits of shares

Fix-point numbers

- \(m\) bits before the point, \(n\) bits after. Representation: sharing over \(\mathbb{Z}_{2^{m+n}}\)
- Addition: usual addition modulo \(\mathbb{Z}_{2^{m+n}}\)
- Multiplication of \([x]\) and \([y]\):
 1. Up-convert \([x]\) and \([y]\) to \(\mathbb{Z}_{2^{2(m+n)}}\)
 2. Multiply normally, resulting in \([z]\)
 3. Return \([z/2^n] \mod 2^{m+n} \in \mathbb{Z}_{2^{m+n}}\)
Reminder: SPDZ

- i-th party has a private value $\alpha_i \in F$
- Denote $\alpha = \alpha_1 + \cdots + \alpha_n$

Private representation J^v_K of a value $v \in F$ is the following:

- i-th party privately holds $J^v_K = (\left[v\right]^i, \langle v \rangle^i) \in \mathbb{F}^2$

Linear operations with private values are done locally by parties.

A private value can be opened to all parties, or to a single party.

Inconsistencies are detected.

Multiplication triples (“Beaver triples”) are used to multiply private values.

Multiplication triples are generated during the offline phase of the protocol.
Reminder: SPDZ

- i-th party has a private value $\alpha_i \in \mathbb{F}$
 - Denote $\alpha = \alpha_1 + \cdots + \alpha_n$

- Private representation $[v]$ of a value $v \in \mathbb{F}$ is the following:
 - i-th party privately holds $[v]_i = ([v], \langle v \rangle_i) \in \mathbb{F}^2$
 - $[v]_1 + \cdots + [v]_n = v$
 - $\langle v \rangle_1 + \cdots + \langle v \rangle_n = \alpha \cdot v$
Reminder: SPDZ

- **i-th party has a private value** \(\alpha_i \in \mathbb{F}

- Denote \(\alpha = \alpha_1 + \cdots + \alpha_n \)

- **Private representation** \([v]_i\) of a value \(v \in \mathbb{F} \) is the following:
 - **i-th party privately holds** \([v]_i = ([v]_i, \langle v \rangle_i) \in \mathbb{F}^2\)
 - \([v]_1 + \cdots + [v]_n = v\)
 - \(\langle v \rangle_1 + \cdots + \langle v \rangle_n = \alpha \cdot v\)

- Linear operations with private values are done locally by parties
Reminder: SPDZ

- i-th party has a private value $\alpha_i \in \mathbb{F}$
 - Denote $\alpha = \alpha_1 + \cdots + \alpha_n$

- Private representation $\llbracket v \rrbracket$ of a value $v \in \mathbb{F}$ is the following:
 - i-th party privately holds $\llbracket v \rrbracket_i = ([v]_i, \langle v \rangle_i) \in \mathbb{F}^2$
 - $[v]_1 + \cdots + [v]_n = v$
 - $\langle v \rangle_1 + \cdots + \langle v \rangle_n = \alpha \cdot v$

- Linear operations with private values are done locally by parties
- A private value can be *opened* to all parties, or to a single party
 - Inconsistencies are detected
Reminder: SPDZ

- i-th party has a private value $\alpha_i \in \mathbb{F}$
 - Denote $\alpha = \alpha_1 + \cdots + \alpha_n$
- Private representation $[v_i]$ of a value $v \in \mathbb{F}$ is the following:
 - i-th party privately holds $[v_i] = ([v_i], \langle v_i \rangle) \in \mathbb{F}^2$
 - $[v_1] + \cdots + [v_n] = v$
 - $\langle v \rangle_1 + \cdots + \langle v \rangle_n = \alpha \cdot v$
- Linear operations with private values are done locally by parties
- A private value can be opened to all parties, or to a single party
 - Inconsistencies are detected
- Multiplication triples ("Beaver triples") are used to multiply private values
 - Multiplication triples are generated during the offline phase of the protocol
Reminder: SPDZ

- i-th party has a private value $\alpha_i \in \mathbb{F}$
 - Denote $\alpha = \alpha_1 + \cdots + \alpha_n$
- Private representation $[v]$ of a value $v \in \mathbb{F}$ is the following:
 - i-th party privately holds $[v]_i = ([v], \langle v \rangle_i) \in \mathbb{F}^2$
 - $[v]_1 + \cdots + [v]_n = v$
 - $\langle v \rangle_1 + \cdots + \langle v \rangle_n = \alpha \cdot v$
- Linear operations with private values are done locally by parties
- A private value can be opened to all parties, or to a single party
 - Inconsistencies are detected
- Multiplication triples ("Beaver triples") are used to multiply private values
 - Multiplication triples are generated during the offline phase of the protocol
- Oblivious permutations?
Permute-and-Share

- P_1 has permutation π of m elements
 \[\vec{y} \in \mathbb{F}^m \]
 \[\vec{x}, \vec{z} \in \mathbb{F}^m \]
 satisfying $\pi(\vec{x}) = \vec{y} + \vec{z}$

- If one party is malicious, then still private, but not necessarily correct
Permute-and-Share

- P_1 has permutation π of m elements

\[\bar{y} \in \mathbb{F}^m \]
\[\bar{x}, \bar{z} \in \mathbb{F}^m \]

satisfying $\pi(\bar{x}) = \bar{y} + \bar{z}$

- If one party is malicious, then still private, but not necessarily correct
- Protocols for Permute-and-Share have been proposed
 - Based e.g. on oblivious transfer and permutation networks
 - Also with optimizations for multiple instances using the same π
Applying a permutation known to k-th party

π P_k $[\vec{v}]_i, \langle \vec{\nu} \rangle_i$

P_i
Applying a permutation known to k-th party

π π

P_k P_i

$[\vec{v}]_i, \langle \vec{v} \rangle_i$

PaS PaS

offline online

π π
Applying a permutation known to k-th party

\[\pi \vec{x}, \vec{z}, \vec{y} \]

\[\pi \vec{v}_i \]

\[\langle \vec{v} \rangle_i \]

\[P_k \]

\[P_i \]

\[[\vec{v}]_i, \langle \vec{v} \rangle_i \]

\[\text{offline} \]

\[\text{online} \]

Dec. 2021
Applying a permutation known to k-th party

$\pi \vec{y}, \vec{x}, \vec{z}$

offline

online

$\pi \vec{y}$

$\pi \vec{y}$

$\vec{v}_i - \vec{x}, \langle \vec{v} \rangle_i - \vec{x}$

$[\vec{v}]_i, \langle \vec{v} \rangle_i$

P_k

P_i

Private, but not necessarily correct
Applying a permutation known to k-th party

\[
\begin{align*}
\vec{y} & \leftarrow \pi(\vec{v}_i - \vec{x}), \quad \vec{y} \leftarrow \pi(\langle \vec{v} \rangle_i - \vec{x}) \\
\vec{x}, \vec{z} & \leftarrow \pi(\vec{y}) \\
\vec{s} & \leftarrow \pi(\vec{v}_i) + \vec{y} \\
\langle \vec{s} \rangle_i & \leftarrow \pi(\langle \vec{v} \rangle_i) + \vec{y} \\
\vec{w} & \leftarrow \vec{z} \\
\langle \vec{w} \rangle_i & \leftarrow \vec{z} \\
\vec{s}_i, \vec{w}_i & \text{ additively share } \pi(\vec{v}_i)
\end{align*}
\]
Applying a permutation known to k-th party

P_k runs this protocol with all P_i in parallel

\circ $i \in \{1, \ldots, n\}\backslash\{k\}$

\[
\begin{align*}
[s]_i & \leftarrow \pi([\vec{v}]_i - \vec{x}) + \vec{y} \\
\langle s \rangle_i & \leftarrow \pi(\langle \vec{v} \rangle_i - \vec{x}) + \vec{y} \\
[\vec{w}]_i & \leftarrow \vec{z} \\
\langle \vec{w} \rangle_i & \leftarrow \vec{z}
\end{align*}
\]

$[\vec{s}]_i, [\vec{w}]_i$ additively share $\pi([\vec{v}]_i)$
Applying a permutation known to k-th party

P_k runs this protocol with all P_i in parallel

- $i \in \{1, \ldots, n\}\backslash\{k\}$
- P_i obtains $[\bar{w}]_i$ as result
- P_k obtains $[\bar{s}]_1, \ldots, [\bar{s}]_n$ (except $[\bar{s}]_k$)

$[\bar{s}]_i \leftarrow \pi([\bar{v}]_i - \bar{x}) + \bar{y}$

$\langle \bar{s} \rangle_i \leftarrow \pi(\langle \bar{v} \rangle_i - \bar{x}) + \bar{y}$

$[\bar{s}]_i, [\bar{w}]_i$ additively share $\pi([\bar{v}]_i)$
Applying a permutation known to \(k \)-th party

\[
\text{PaS} \rightarrow P_k \rightarrow [\vec{v}]_i, \langle \vec{v} \rangle_i \leftarrow P_i \rightarrow \text{PaS}
\]

- \(P_k \) runs this protocol with all \(P_i \) in parallel
 - \(i \in \{1, \ldots, n\} \setminus \{k\} \)
- \(P_i \) obtains \([\vec{w}]_i \) as result
- \(P_k \) obtains \([\vec{s}]_1, \ldots, [\vec{s}]_n \) (except \([\vec{s}]_k \))
- \(P_k \) defines \([\vec{s}]_k \leftarrow \pi([\vec{v}]_k) \)
- \(P_k \) defines \([\vec{w}]_k \leftarrow \sum_{i=1}^{n} [\vec{s}]_i \)

\[
[\vec{s}]_i \leftarrow \pi([\vec{v}]_i - \vec{x}) + \vec{y} \quad [\vec{w}]_i \leftarrow \vec{z}
\]

\[
\langle \vec{s} \rangle_i \leftarrow \pi(\langle \vec{v} \rangle_i - \vec{x}) + \vec{y} \quad \langle \vec{w} \rangle_i \leftarrow \vec{z}
\]

\([\vec{s}]_i, [\vec{w}]_i \) additively share \(\pi([\vec{v}]_i) \)

Dec. 2021
Applying a permutation known to k-th party

$\pi \vec{y}, \vec{x}, \vec{z}$

$\pi \vec{v}_i, \langle \vec{v} \rangle_i$

π

P_k runs this protocol with all P_i in parallel

\circ $i \in \{1, \ldots, n\} \backslash \{k\}$

P_i obtains $[\vec{w}]_i$ as result

P_k obtains $[\vec{s}]_1, \ldots, [\vec{s}]_n$ (except $[\vec{s}]_k$)

P_k defines $[\vec{s}]_k \leftarrow \pi([\vec{v}]_k)$

P_k defines $[\vec{w}]_k \leftarrow \sum_{i=1}^{n} [\vec{s}]_i$

Private, but not necessarily correct

$\pi \vec{v}_i - \vec{x}, \langle \vec{v} \rangle_i - \vec{x}$

$\pi \vec{x}, \vec{z}$

π

$[\vec{s}]_i \leftarrow \pi([\vec{v}]_i - \vec{x}) + \vec{y}$

$[\vec{w}]_i \leftarrow \vec{z}$

$\langle \vec{s} \rangle_i \leftarrow \pi(\langle \vec{v} \rangle_i - \vec{x}) + \vec{y}$

$\langle \vec{w} \rangle_i \leftarrow \vec{z}$

$[\vec{s}]_i, [\vec{w}]_i$ additively share $\pi([\vec{v}]_i)$
Oblivious permutation (1/2)

- Private representation $[\pi]$ of permutation π is the following:
 - i-th party holds a random permutation π_i, subject to $\pi_1 \circ \cdots \circ \pi_n = \pi$
Oblivious permutation (1/2)

- Private representation $\mathbb{[\pi]}$ of permutation π is the following:
 - i-th party holds a random permutation π_i, subject to $\pi_1 \circ \cdots \circ \pi_n = \pi$

- Applying $\mathbb{[\pi]}$ to $\mathbb{[\vec{v}]}$:
 - Apply π_1 (known to P_1) to $\mathbb{[\vec{v}]}$,
 - Apply π_2 (known to P_2) to the result,
 - \ldots
 - Apply π_n (known to P_n) to the result, giving $\mathbb{[\vec{w}]}$
Oblivious permutation (1/2)

- Private representation $\llbracket \pi \rrbracket$ of permutation π is the following:
 - i-th party holds a random permutation π_i, subject to $\pi_1 \circ \cdots \circ \pi_n = \pi$

- Applying $\llbracket \pi \rrbracket$ to $\llbracket \vec{v} \rrbracket$:
 - Apply π_1 (known to P_1) to $\llbracket \vec{v} \rrbracket$,
 - Apply π_2 (known to P_2) to the result,
 - \ldots
 - Apply π_n (known to P_n) to the result, giving $\llbracket \vec{w} \rrbracket$

- This is private. But how to be sure that \vec{v} and \vec{w} have the same elements?
Permutation checking

- Let \(\vec{v} \in \mathbb{F}^m \). Define polynomial \(p_{\vec{v}}(X) \in \mathbb{F}[X] \) as

\[
p_{\vec{v}}(X) = \prod_{i=1}^{m} (X - v_i)
\]

- \(\vec{v} \) and \(\vec{w} \) are permutations of each other, iff \(p_{\vec{v}}(X) = p_{\vec{w}}(X) \)
Permutation checking

- Let $\vec{v} \in F^m$. Define polynomial $p_{\vec{v}}(X) \in F[X]$ as

$$p_{\vec{v}}(X) = \prod_{i=1}^{m} (X - v_i)$$

- \vec{v} and \vec{w} are permutations of each other, iff $p_{\vec{v}}(X) = p_{\vec{w}}(X)$

- If $|F| \gg m$, then this equality check of polynomials can be done as follows:
 - Pick random $r \leftarrow F$. Check that $p_{\vec{v}}(r) = p_{\vec{w}}(r)$
 - Probability of false positive: $m/|F|$
Oblivious permutation (2/2)

- Pick fresh random $[r], [r']$
- Compute

$$[r'] \cdot \left(\prod_{i=1}^{m} ([r] - [v_i]) - \prod_{i=1}^{m} ([r] - [w_i]) \right)$$

- Open the result, abort if $\neq 0$
 - Random r' masks any possible leaks, if the result is not 0
Permuting two vectors with the same permutation

- \(\vec{w}, \vec{w}' \) are the same permutation of \(\vec{v}, \vec{v}' \), iff

\[
\prod_{i=1}^{m}(X - v_i - Yv'_i) = \prod_{i=1}^{m}(X - w_i - Yw'_i)
\]

- Hence, after applying the first half of the permutation protocol to both \(\vec{v} \) and \(\vec{v}' \), we
 - Pick fresh random \([r], [s], [r']\)
 - Open \(r \) and \(s \)
 - Compute

\[
[r'] \cdot \left(\prod_{i=1}^{m}(r - [v_i] - s[v'_i]) - \prod_{i=1}^{m}(r - [w_i] - s[w'_i]) \right)
\]

- Open the result, abort if \(\neq 0 \)
Bits in multiple fields

- Want: \((\lceil b \rceil_p, \lceil b \rceil_{2^\ell})\) for \(b \in \{0, 1\}\)
 - i.e. the same bit shared over both \(\mathbb{Z}_p\) and \(\mathbb{F}_{2^\ell}\)
 - These would be useful for mixed boolean / arithmetic computations

- **Doubly authenticated bit:** “daBit”
- Let SPDZ instances be set up for computing in \(\mathbb{Z}_p\), and in \(\mathbb{F}_{2^\ell}\)
- “extended daBit” (edaBit): \((\lceil b \rceil_p, \lceil b_0 \rceil_{2^\ell}, \ldots, \lceil b_m \rceil_{2^\ell})\), such that \(b = \sum_i b_i2^i\)
generating many daBits

1. Each computing party P_j inputs $(b_{j,1}, \ldots, b_{j,m})$ to both SPDZ instances
2. Cut-and-choose: open C positions in the vectors input by parties
 - Same positions for all parties
3. Combine: Let $b_i \leftarrow \bigoplus_{j=1}^{n} b_{j,i}$ in both SPDZ instances
 - $x \oplus y = x + y - 2xy$ in \mathbb{Z}_p; requires a multiplication triple to compute
4. Pairwise check: put bits into buckets of size B, use all later bits of a bucket to check consistency of the first, keep only the first
 - Compute and open $b_1 \oplus b_k$ in both SPDZ instances; make sure they are the same
 - Again needs a multiplication triple modulo p
5. Result: $(m - C)/B$ daBits

Optimization: (some of) the used multiplication triples do not need to be pairwise-checked themselves
generating edaBits
Arithmetic circuits (over \mathbb{Z}_p) for ZK proofs
Generating a bit

Set-up
- Some inputs of the circuit are “instance”, the rest are “witness”
- The circuit has one or more outputs
- The circuit accepts an instance-witness pair, if all outputs are 0
- When encoding our problem as a circuit, we may add more inputs, related to existing inputs
 - In instance: we can be sure that they are related in the correct way
 - In witness: no correctness guarantees

- Goal: make sure that input w to the circuit belongs to $\{0, 1\}$
- Technique: Let the circuit compute $w \cdot w - w$ and output the result
Inversion

\[\begin{array}{c|c}
\text{Inputs} & \text{Outputs} \\
\hline
x & y = x - 1 \\
\end{array} \]

Want: \[\square \leftarrow x^{-1} \]

Extend the witness

The prover is able to put

\[y = x - 1 \]

And the circuit can check that
Inversion

Want: \(\square \leftarrow x^{-1} \)

Extend the witness
Inversion

Want: \(\Box \leftarrow x^{-1} \)

Extend the witness

The prover is able to put \(y = x^{-1} \)
Inversion

Want: $\square \leftarrow x^{-1}$

- Extend the witness
- The prover is able to put $y = x^{-1}$
- And the circuit can check that

Diagram:
- Inputs: x, y
- Outputs: \square
- $y = x - 1$
- \square can be computed as $x - 1$
Equality check (actually: check of being zero)

\[x \neq 0 \quad \text{if and only if} \quad y \neq 0 \]

Want: \(\square \in \{0, 1\} \);
\(\square = 1 \) iff \(x = 0 \)
Equality check (actually: check of being zero)

\[b^* - 1 + y^* - 1 \]

Want: \(\square \in \{0, 1\} \); \(\square = 1 \) iff \(x = 0 \)

Extend the witness
Equality check (actually: check of being zero)

Want: $\square \in \{0, 1\}$; $\square = 1$ iff $x = 0$

Extend the witness

Check: if $b = 1$, then $x = 0$
Equality check (actually: check of being zero)

- Want: $\square \in \{0, 1\}$; $\square = 1$ iff $x = 0$
- Extend the witness
- Check: if $b = 1$, then $x = 0$
- Check: if $b = 0$, then the inverse of x must exist
Permutations

- The entries of the vectors \vec{v} and \vec{w} (length: m) are available in the arithmetic circuit.
- Prover wants to convince verifier that \vec{w} is a permutation of \vec{v}.
- Sometimes also wants to explicitly have “the permutation π, s.t. $\pi(\vec{v}) = \vec{w}$” in order to show that several vectors have been permuted in the same manner.
- Two possible solutions:
 - permutation networks
 - Also applicable to some MPC protocols, e.g. GC
 - Check that certain polynomials are equal
 - \vec{w} is a permutation of \vec{v} iff $\prod_{i=1}^{m}(X - v_i) = \prod_{i=1}^{m}(X - w_i)$
Checking the equality of polynomials

- Goes somewhat out of our model
- Arithmetic circuit contains the computation and output of
 \[
 \prod_{i=1}^{m} (r - v_i) - \prod_{i=1}^{m} (r - w_i),
 \]
 where \(r \) is an input to the arithmetic circuit.
- Only after Prover has committed to everything determining \(\vec{v} \) and \(\vec{w} \), will Verifier fix the value of \(r \)
- The ZK Proof technique must be able to handle such multi-step definition of inputs
Permutation networks

Binary switch
- Two “data” inputs, one “control” input, two “data” outputs
 - Data: elements of \mathbb{Z}_p. Control: a boolean
- If “control” is true, then works as $(x, y) \mapsto (x, y)$, otherwise $(x, y) \mapsto (y, x)$
 - Can be realized in an arithmetic circuit with a single multiplication

- Connect a bunch of binary switches together, obtaining a network
 - Let it have m inputs and m outputs
 - Internally, all fan-ins and fan-outs are 1
- It realizes a permutation of m values. “Control” inputs allow to choose, which one
- Want: a network of small size (and depth), able to realize any permutation
Waksman networks

- $m \times m$ Waksman network — a permutation network with m inputs and outputs
- 1×1 network — a single wire. 2×2 network — a single switch

Number of switches: $m \log m - m + 1$, if m is a power of two

Source
From RAM program to circuit

Processor

Registers

ALU

fetch(pc)

store(addr,val)

load(addr)

Code

Memory
From RAM program to circuit

Relation R states:
For each time moment:
- ALU computes correctly
- Registers’ values are correct
- Correct store is generated if fetch and load work correctly
From RAM program to circuit

Relation R states:
For each time moment:
- ALU computes correctly
- Registers’ values are correct
- Correct store is generated if fetch and load work correctly

Relation R states:
For each time moment:
for each address:
- if a load from this address is done
- then the value is the same that was most recently stored there
loads and stores match

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
</tbody>
</table>
loads and stores match

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
</tbody>
</table>

Sort by addr,time

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
</tbody>
</table>
loads and stores match

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
</tbody>
</table>

Sort by addr, time

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
</tbody>
</table>

Relation R states:

For each row:
- if op = load then
- val = val_{prev} \&\&
- addr = addr_{prev}
loads and stores match

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
</tbody>
</table>

Sort by addr, time

Include permutation as part of witness

Relation R

- applies permutation
- checks sortedness

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
</tbody>
</table>

Relation R states:

For each row:
- if op = load then
 - val = val_{prev} &&
 - addr = addr_{prev}
Reminder: ZKP from Garbled circuits

- V becomes the garbler for the circuit for R
 - Outputs “false” and “true” have secret encodings
- V and P run OT protocols for P to learn the keys corresponding to the bits of w
- V sends the keys corresponding to the bits of x to P
- P evaluates the circuit and obtains the result T; commits to it
- V sends all keys to P; P checks that the circuit was correctly garbled
 - ZK is a variant of 2PC, where V has no secrets
- P opens the commitment of T to V
Stacked garbling

- Let P want to prove $R_1 \lor \cdots \lor R_m$, let C_i be circuit for R_i
 - Suppose P is able to prove R_t
- Verifier picks seeds r_1, \ldots, r_m, generates garbled circuits G_1, \ldots, G_m
 - Assume that G_1, \ldots, G_m all have the same length as bit-strings
 - Also assume they all take the same inputs
- Verifier sends $G_1 \oplus \cdots \oplus G_m$ to Prover
- V & P run $(m - 1)$-out-of-m OT, Prover learns $r_1, \ldots, r_{t-1}, r_{t+1}, \ldots, r_m$
 - Possible implementation: run 1-out-of-2 OT, m times. Let r_0 be a random string
 - For i-th OT, V’s inputs are (r_i, r_0)
 - P is later required to show the knowledge of r_0
- P now is able to compute all of G_1, \ldots, G_m
 - I.e. learns all keys, and the labels T_i for “true” for $G_1, \ldots, G_{t-1}, G_{t+1}, \ldots, G_m$
Stacked garbling (cont.)

- V & P have to run OT for P to learn the key $k_{i,t}^{b_i}$ corresponding to bit w_i
 - P's (as Receiver) input: b_i
 - V's (as Sender) inputs: $k_{i,1}^0 \oplus \cdots \oplus k_{i,m}^0$ and $k_{i,1}^1 \oplus \cdots \oplus k_{i,m}^1$

- P already knows the keys $k_{i,1}^{b_i}, \ldots, k_{i,t-1}^{b_i}, k_{i,t+1}^{b_i}, \ldots, k_{i,m}^{b_i}$, and can thus find $k_{i,t}^{b_i}$
- P evaluates the circuit and learns T_t
- P commits to $r_0 \parallel T_1 \parallel \cdots \parallel T_m$
- Continue with the openings as usual

Remark

This also generalizes to “normal” two-party computation [ePrint 2020/973].

- A wire label may serve as seed for garbling a subcircuit
More specific tricks
Generate random non-zero value and its inverse in MPC over \mathbb{Z}_p

- Generate random $[r], [s] \in \mathbb{Z}_p$. Compute $[rs]$ and declassify it
- If $rs = 0$, then start over
- Output $[r]$ and $(rs)^{-1} \cdot [s]$
Inversion in MPC over \mathbb{Z}_p

- Given $[x] \in \mathbb{Z}_p$. It is known that $x \neq 0$. Want $[y] \in \mathbb{Z}_p$, such that $y = x^{-1}$
- Generate a random $[r] \in \mathbb{Z}_p$
- Compute $[rx]$ and declassify it
- If $rx = 0$, then start over
- Return $(rx)^{-1} \cdot [r]$
Inverting a matrix in MPC over \mathbb{Z}_p

- The entries of a square matrix X have been shared. We can write

$$[X] = \begin{pmatrix}
[X_{11}] & [X_{12}] & \cdots & [X_{1n}] \\
[X_{21}] & [X_{22}] & \cdots & [X_{2n}] \\
\vdots & \vdots & \ddots & \vdots \\
[X_{n1}] & [X_{n2}] & \cdots & [X_{nn}]
\end{pmatrix}$$

- We want to get the secret-shared entries of X^{-1}

- Generate a random invertible $[R] \in \mathbb{Z}_p^{n \times n}$
 - Similarly to generating random non-zero values

- Compute $[Y] = [X] \cdot [R]$ and declassify it

- Return $[R] \cdot Y^{-1}$
 - This involves only linear computations
Long multiplication in constant rounds

- Given \([x_1], \ldots, [x_n] \in \mathbb{Z}_p\), \(x_i \neq 0\). Find \([y] = [x_1] \cdot \cdots \cdot [x_n]\)
- Generate random \([r_1], \ldots, [r_n]\) together with \([r_1^{-1}], \ldots, [r_n^{-1}]\)
 - Also denote \(r_0 = 1\)
- Compute \([s_i] = [r_{i-1}^{-1}] \cdot [x_i] \cdot [r_i]\) and declassify them
- Compute \(s = s_1 \cdot \cdots \cdot s_n\)
- Return \(s \cdot [r_n^{-1}]\)
Long multiplication in constant rounds

- Given $[x_1], \ldots, [x_n] \in \mathbb{Z}_p$, $x_i \neq 0$. Find $[y] = [x_1] \cdots [x_n]$
- Generate random $[r_1], \ldots, [r_n]$ together with $[r_1^{-1}], \ldots, [r_n^{-1}]$
 - Also denote $r_0 = 1$
- Compute $[s_i] = [r_{i-1}^{-1}] \cdot [x_i] \cdot [r_i]$ and declassify them
- Compute $s = s_1 \cdots s_n$
- Return $s \cdot [r_n^{-1}]$

 $$s \cdot r_n^{-1} = (1 \cdot x_1 r_1) \cdot (r_1^{-1} x_2 r_2) \cdots (r_{n-1}^{-1} x_n r_n) \cdot r_n^{-1} = x_1 x_2 \cdots x_n$$
Matrix multiplication for ZK

- Let the entries of matrices A, B, C be available in the circuit
- Want to check that $A \cdot B = C$
- Repeat k times for soundness error $\leq 2^{-k}$:
 - Verifier generates a random vector \vec{v} of appropriate length
 - Its elements are added to the inputs of the circuit
 - Check that $A \cdot (B \cdot \vec{v}) = C \cdot \vec{v}$