Translating programs to circuits / MPC / ZK

Dec. 2021
Features of programs

- Arithmetic and logical operations
 - division, less-than, ...
- Control flow: If-then-else. Loops. Function calls...
- Reading and writing from / to computed addresses
- Integers ↔ bit-strings
 - Many different data types (booleans, integers, fix- and floating-point numbers)
- Random number generation
Computations as garbled circuits

- Convert computation to a boolean circuit, as usual
 - Like doing hardware design
 - Except that XOR-gates are free
- Random bit: let Garbler and Evaluator both enter a bit, XOR them

1-bit_adder\((x, y, c)\):
- \(s \leftarrow x \oplus y \oplus c\)
- \(c' \leftarrow ((x \oplus c) \land (y \oplus c)) \oplus c\)
 - \(c'\) should be the majority of \(x, y, c\)
 - \(c' = x \land y \oplus x \land c \oplus y \land c\)

1-bit_lessThan: \(\ell(x, y, c)\):
- \(c\) is the result of comparing less-significant parts of \(x\) and \(y\)
- return \((- (x \oplus c) \land (y \oplus c)) \oplus c\)

\(lessThan(x_k \ldots x_1, y_k \ldots y_1) = \ell(x_k, y_k, \ell(x_{k-1}, y_{k-1}, \ldots, \ell(x_1, y_1, 0) \ldots)))\)
if-then-else

- $\text{mux}(b, x, y) := \text{if } b \text{ then } x \text{ else } y$
 - $\text{mux}(b, x, y) \leftarrow y \oplus (b \land (x \oplus y))$
 - $\text{mux}(b, x, y) \leftarrow y + b \cdot (x - y)$ for integers

- Computing **if** b **then** P_1 **else** P_2:
 - Let V be the set of variables changed in at least one of P_1 and P_2
 - Compute both P_1 and P_2, rename $v \in V$ to v_i in P_i
 - Computing both P_1 and P_2 is a serious inefficiency compared to computations *in the clear*
 - Try to locate any commonalities in P_1 and P_2, and move them out of the branches
 - Compute $v := \text{mux}(b, v_1, v_2)$ for all $v \in V$

- Somewhat more is possible for garbled circuits
loops

- Only **for**-loops are supported
About arithmetic computations

- We consider the following (families of) protocol sets
 - “Sharemind”: additive sharing over 3 parties, rings \mathbb{Z}_{2^n}
 - Protocols for computing over fields \mathbb{Z}_p, either Shamir’s sharing or SPDZ-like
- Support linear operations, multiplication, (de)classification, random number generation
- Any computation can be made *in the clear*
Generating a random bit

In computations over \mathbb{Z}_p
- Generate a random $[r] \in \mathbb{Z}_p$. Compute $s = \text{declassify}([r]^2)$. If $s = 0$, start over.
- Let $r' = \sqrt{s}$ and $[t] = (1/r') \cdot [r]$.
 - It is pre-agreed, which of two values of $\sqrt{\cdot}$ we take.
- We have $t \in \{-1, 1\}$. Mapping it to $\{0, 1\}$ is a linear operation.

In Sharemind
Just generate a random element of \mathbb{Z}_2.
Sharemind: convert a bit to an integer

\[[u]_3 \]

\[P_3 \]

\(u \in \mathbb{Z}_2, \ v \in \mathbb{Z}_{2^n}, \ v = u \)

\[[u]_1 \]

\[P_1 \]

\[[u]_2 \]

\[P_2 \]
Sharemind: convert a bit to an integer

\[
\begin{align*}
\left[u \right]_1 & \quad \begin{array}{c} b_2, b_3 \leftarrow \mathbb{Z}_2, m_2, m_3 \leftarrow \mathbb{Z}_{2^n} \\
\text{s.t. } m_2 + m_3 &= u_1 \oplus b_2 \oplus b_3
\end{array} \\
\left[u \right]_2 & \\
\left[u \right]_3 \\
P_1 & \\
P_2 & \\
P_3 &
\end{align*}
\]

\[u \in \mathbb{Z}_2, \ v \in \mathbb{Z}_{2^n}, \ v = u \]
Sharemind: convert a bit to an integer

\[\begin{align*}
\mathbf{b}_3, \mathbf{m}_3 & \quad \mathbf{[u]}_3 \\
\mathbf{b}_2, \mathbf{m}_2 & \quad \mathbf{[u]}_2 \\
\mathbf{b}_2, \mathbf{b}_3 & \leftarrow \mathbb{Z}_2, \quad \mathbf{m}_2, \mathbf{m}_3 & \leftarrow \mathbb{Z}_2^n \\
\text{s.t. } \mathbf{m}_2 + \mathbf{m}_3 &= \mathbf{u}_1 \oplus \mathbf{b}_2 \oplus \mathbf{b}_3
\end{align*} \]

\[\mathbf{u} \in \mathbb{Z}_2, \quad \mathbf{v} \in \mathbb{Z}_2^n, \quad \mathbf{v} = \mathbf{u} \]
Sharemind: convert a bit to an integer

\[
\begin{align*}
\[u\]_1 &\rightarrow P_1 & b_2 \oplus [u]_2 &\rightarrow [u]_2 \\
\[u\]_3 &\rightarrow P_3 & b_3 \oplus [u]_3 &\rightarrow [u]_3 \\
\end{align*}
\]

\[b_2, b_3 \leftarrow \mathbb{Z}_2, m_2, m_3 \leftarrow \mathbb{Z}_{2^n}\]
\[\text{s.t. } m_2 + m_3 = u_1 \oplus b_2 \oplus b_3\]

\[\odot u \in \mathbb{Z}_2, \; v \in \mathbb{Z}_{2^n}, \; v = u\]
Sharemind: convert a bit to an integer

\[u \in \mathbb{Z}_2, \; v \in \mathbb{Z}_{2^n}, \; v = u \]

\[s \leftarrow \lfloor u \rfloor_2 \oplus \lfloor u \rfloor_3 \oplus b_2 \oplus b_3 \]

\[b_2, b_3 \leftarrow \mathbb{Z}_2, \; m_2, m_3 \leftarrow \mathbb{Z}_{2^n}, \]

s.t. \[m_2 + m_3 = u_1 \oplus b_2 \oplus b_3 \]
Sharemind: convert a bit to an integer

\[\begin{align*}
\& \quad \frac{\color{red}{b_3, m_3}}{\text{\footnotesize \textcircled{b_3 \oplus \left[u \right]_3}}} \\
\begin{array}{c}
\frac{\left[u \right]_3}{P_3} \quad \frac{\left[u \right]_2}{P_2} \\
\frac{\left[u \right]_1}{P_1}
\end{array}
\end{align*} \]

- \(u \in \mathbb{Z}_2, v \in \mathbb{Z}_{2^n}, v = u \)
- \(s \leftarrow \left[u \right]_2 \oplus \left[u \right]_3 \oplus b_2 \oplus b_3 \)
- \(u = s \oplus (m_2 + m_3) \)
 - I.e. \(m_2, m_3 \) additively share either \(u \) or \(-u = 1 - u \)
- Parties \(P_2 \) and \(P_3 \) know, which case it is
Sharemind: convert a bit to an integer

- $u \in \mathbb{Z}_2$, $v \in \mathbb{Z}_{2^n}$, $v = u$
- $s \leftarrow \lfloor u \rfloor_2 \oplus \lfloor u \rfloor_3 \oplus b_2 \oplus b_3$
- $u = s \oplus (m_2 + m_3)$
 - i.e. m_2, m_3 additively share either u or $-u = 1 - u$
- Parties P_2 and P_3 know, which case it is
 - $[v]_1 \leftarrow 0$
 - $[v]_2 \leftarrow \text{mux}(s, 1 - m_2, m_2)$
 - $[v]_3 \leftarrow \text{mux}(s, -m_3, m_3)$

Dec. 2021

8
Integer → bit-string (“Bit extraction”)

For converting \([a]\), computations over \(\mathbb{Z}_p\), where \([\log p] = n\)

- Generate random bits \([r_0], \ldots, [r_{n-1}]\), let \([r] \leftarrow \sum_{i=0}^{n-1} 2^i \cdot [r_i]\)
- Compare \(([r]_{n-1}, \ldots, [r]_0)\) against \(p\), start over if not less
- Let \(b = \text{declassify}([a] - [r])\), think of it as bit-string \((b_{n-1}, \ldots, b_0)\)
- Run the addition circuit for \((b_{n-1}, \ldots, b_0) + ([r]_{n-1}, \ldots, [r]_0)\)

For converting \([a]\), in Sharemind

- Each party creates a bitwise sharing of his share of \([a]\)
 - Let other parties' shares be \(\vec{0}\), then sharing is a no-op
- Use addition circuit to add them together
Bit-string \rightarrow integer in Sharemind

- Given $[b_0], \ldots, [b_{n-1}] \in \mathbb{Z}_2$, want to get $[a] \in \mathbb{Z}_{2^n}$, such that $a = \sum_{i=0}^{n-1} b_i \cdot 2^i$
- May convert each bit to \mathbb{Z}_{2^n}, but this is expensive: $O(n^2)$ effort
Bit-string \rightarrow integer in Sharemind

- Given $[b_0], \ldots, [b_{n-1}] \in \mathbb{Z}_2$, want to get $[a] \in \mathbb{Z}_{2^n}$, such that $a = \sum_{i=0}^{n-1} b_i \cdot 2^i$
- May convert each bit to \mathbb{Z}_{2^n}, but this is expensive: $O(n^2)$ effort
- Generate random $[r] \in \mathbb{Z}_{2^n}$, convert it into a bit-string
 - As on previous slide, let $[c_0], \ldots, [c_{n-1}] \in \mathbb{Z}_2$ be the result
- Run addition circuit on $([b_0], \ldots, [b_{n-1}])$ and $([c_0], \ldots, [c_{n-1}])$
- Declassify the result, let it be s_0, \ldots, s_{n-1}. Let $s = \sum_{i=0}^{n-1} s_i \cdot 2^i$
- Output $s - [r]$
Equality check in Sharemind

- Given \([a] \in \mathbb{Z}_{2^n}\), want to get \([b] \in \mathbb{Z}_2\), indicating whether \(a = 0\)
- **ReshareToTwo**(by \(P_1\)):
 - \(P_1\) sends random \(r \in \mathbb{Z}_{2^n}\) to \(P_2\) and \([a]_1 - r\) to \(P_3\)
 - Update shares: \([a]_1 := 0, [a]_2 := [a]_2 + r, [a]_3 := [a]_3 + [a]_1 - r\)
- Let \(x = [a]_2\) and \(y = -[a]_3\). We have \(a = 0\) iff \(x = y\)
- \(P_2\) shares \(x \in \mathbb{Z}_{2^n}\). \(P_3\) shares \(y \in \mathbb{Z}_{2^n}\). Result: \([x_0], [y_0], \ldots, [x_{n-1}], [y_{n-1}] \in \mathbb{Z}_2\)
 - Other parties’ shares are \(\vec{0}\). Hence a no-op
- Compute \([b] = \bigwedge_{i=0}^{n-1} [x_i] \oplus [y_i]\)
Sorting

- Quicksort is a nice sorting algorithm
 - $O(m \log m)$ comparisons, $O(\log m)$ parallel complexity (in average case)
 - Worst case is bad, but...
- But control flow and memory access patterns of Quicksort and other algorithms depend on the results of previous comparisons
Sorting networks

Comparator

- A “node” with two inputs and two outputs
- Given inputs x, y, puts $\min(x, y)$ to first output and $\max(x, y)$ to second output

- We can build networks with m inputs and outputs from a bunch of comparators
 - Internally, all fan-ins and fan-outs are 1
- Correctly designed network outputs its inputs in sorted order
- Best sorting networks have ca. $m \log^2 m$ comparisons, with $O(\log^2 m)$ parallel complexity
- Memory access pattern (and control flow) is public
How about quicksort?

- Suppose the order of elements in vector \vec{v} does not need protection
- We could then use more efficient sorting algorithms
- Idea:
 1. Apply a random permutation of \vec{v}
 - Unknown to any single computing party
 2. Run quicksort, declassifying all comparison results
- If all elements in \vec{v} are different, then the comparison results are the same as for a random vector
- After applying a random permutation, the worst case of quicksort does not apply
Private shuffle

\[[a_1] \]
\[[a_2] \]
\[[a_3] \]
\[[a_4] \]
\[[a_5] \]
\[[a_6] \]
\[[a_7] \]
\[[a_8] \]
Private shuffle

\[\begin{align*}
[\sigma_1] &\rightarrow [a_1] \\
[\sigma_2] &\rightarrow [a_2] \\
[\sigma_3] &\rightarrow [a_3] \\
[\sigma_4] &\rightarrow [a_4] \\
[\sigma_5] &\rightarrow [a_5] \\
[\sigma_6] &\rightarrow [a_6] \\
[\sigma_7] &\rightarrow [a_7] \\
[\sigma_8] &\rightarrow [a_8]
\end{align*}\]

How to represent \(\sigma\) and do the shuffle if \(\sigma\) itself is private?

\(\sigma = \sigma_1 \circ \sigma_2 \circ \sigma_3\); \(\sigma_1, \sigma_2, \sigma_3\) are random elements of \(S_m\).
Private shuffle

\[\sigma = \sigma_1 \circ \sigma_2 \circ \sigma_3; \]
\[\sigma_1, \sigma_2, \sigma_3 \text{ are random elements of } S_m. \]

$b_i = a_{\sigma(i)}$ for all $i \in \{1, \ldots, m\}$
Private shuffle

\[\sigma_i = a_{\sigma(i)} \text{ for all } i \in \{1, \ldots, m\} \]
\[\sigma \in S_m \text{ is provided by an input party} \]
\[\cdots \text{ or generated randomly} \]
\[\text{How to represent } \sigma \text{ and do the shuffle if } \sigma \text{ itself is private?} \]
Private shuffle

\[\sigma \in S_m \] is provided by an input party or generated randomly.

- \(b_i = a_{\sigma(i)} \) for all \(i \in \{1, \ldots, m\} \)
- \(\sigma \) is private.

How to represent \(\sigma \) and do the shuffle if \(\sigma \) itself is private?

\([[\sigma]] = ((\sigma_1, \sigma_2), (\sigma_2, \sigma_3), (\sigma_3, \sigma_1)) \)

- \(\sigma = \sigma_1 \circ \sigma_2 \circ \sigma_3 \)
- \(\sigma_1, \sigma_2, \sigma_3 \) are random elements of \(S_m \).
Private shuffle
Private shuffle

Dec. 2021 15
Shuffling protocol

\mathcal{CP}_1 shuffles $[\bar{a}]_1$ using σ_1, σ_2

\mathcal{CP}_2 shuffles $[\bar{a}]_2$ using σ_2, σ_3

\mathcal{CP}_3 shuffles $[\bar{a}]_3$ using σ_3, σ_1

Dec. 2021
Shuffling protocol

\[\mathcal{CP}_i \text{ shuffles } J \vec{a}_K^i \text{ using } \sigma_i = \vec{a}_0 \]

\[\vec{r}_2 \]

\[\vec{r}_1 : = J \vec{a}_K^1 + \vec{r}_1 \]

\[J \vec{a}_K^2 - \vec{r}_1 \]

\[[\vec{a}]_2 - \vec{r}_1 \]

\[[\vec{a}]_1 \]

\[\sigma_1, \sigma_2 \]

\[\sigma_2, \sigma_3 \]
Shuffling protocol

\[[\vec{a}]_3 := [\vec{a}]_3 + [\vec{a}]_2 - \vec{r}_1 \]

\[[\vec{a}]_1 := [\vec{a}]_1 + \vec{r}_1 \]

\[[\vec{a}]_2 := 0 \]
Shuffling protocol

\[\tilde{a}_3 \]

\(\mathcal{CP}_3 \)
\(\sigma_3, \sigma_1 \)

Party \(\mathcal{CP}_i \) shuffles \([\tilde{a}]_i \) using \(\sigma_1 \)

\[[\tilde{a}]_1 \]

\(\mathcal{CP}_1 \)
\(\sigma_1, \sigma_2 \)

\[[\tilde{a}]_2 = \tilde{0} \]

\(\mathcal{CP}_2 \)
\(\sigma_2, \sigma_3 \)
Shuffling protocol

\[\vec{a}_1 \]

\[\vec{a}_2 \]

\[\vec{a}_3 \]

\[\sigma_1, \sigma_2 \]

\[\sigma_3, \sigma_1 \]

\[\sigma_2, \sigma_3 \]

\[\vec{r}_1 \]

\[\vec{r}_2 \]

\[\vec{r}_3 \]
Shuffling protocol

\[[\vec{a}]_3 := \vec{0} \]
\[\vec{r}_2 \]
\[[\vec{a}]_1 := [\vec{a}]_1 + [\vec{a}]_3 - \vec{r}_2 \]
\[[\vec{a}]_2 := [\vec{a}]_2 + \vec{r}_2 \]

Party CP\(_i\) shuffles \(\vec{a} \) using \(\sigma_i\).
Shuffling protocol

\[\bar{a}_3 = 0 \]

\(\mathcal{CP}_3 \)

\(\sigma_3, \sigma_1 \)

Party \(\mathcal{CP}_i \) shuffles \(\bar{a}_i \) using \(\sigma_2 \)

\[\bar{a}_1 \]

\(\mathcal{CP}_1 \)

\(\sigma_1, \sigma_2 \)

\[\bar{a}_2 \]

\(\mathcal{CP}_2 \)

\(\sigma_2, \sigma_3 \)
Shuffling protocol

\[\sigma_1, \sigma_2 \]

\[\left[\vec{a} \right]_1 \]

\[\vec{r}_3 \]

\[\sigma_3, \sigma_1 \]

\[\left[\vec{a} \right]_3 \]

\[\left[\vec{a} \right]_2 \]

\[\sigma_2, \sigma_3 \]

\[\left[\vec{a} \right]_1 - \vec{r}_3 \]
Shuffling protocol

\[[\vec{a}]_3 := [\vec{a}]_3 + [\vec{a}]_1 - \vec{r}_3 \]

\[[\vec{a}]_1 := \vec{0} \]

\[\vec{r}_3 \]

\[[\vec{a}]_2 := [\vec{a}]_2 + \vec{r}_3 \]

Party CP shuffles \(\vec{J} \vec{a} K_i \) using \(\sigma_1, \sigma_2 \)

\(\sigma_3, \sigma_1 \)

\(\sigma_2, \sigma_3 \)
Shuffling protocol

Party \mathcal{CP}_i shuffles $[\vec{a}]_i$ using σ_3
Analysis of shuffle

- There is an access structure $\mathcal{A} \subseteq 2^{\{P_1, \ldots, P_n\}}$ (containing privileged sets)
- Each σ_i is known by some privileged set of parties
- Each non-privileged set of parties must not know some σ_i
Analysis of shuffle

- There is an access structure $\mathcal{A} \subseteq 2\{P_1, \ldots, P_n\}$ (containing privileged sets)
- Each σ_i is known by some privileged set of parties
- Each non-privileged set of parties must not know some σ_i
- May have as many σ_i-s, as there are minimal privileged sets. In general, the complexity is $2^{O(n)}$
- On the other hand, the complexity is linear in the length of shuffled vector

The same protocol also works for Shamir-shared data
Characteristic vector (Sharemind)

- There is private value \([k]\). We know that \(0 \leq k < \ell\)
- Want to obtain vector \((\lceil c_0 \rceil, \ldots, \lceil c_{\ell-1} \rceil)\), where \(c_k = 1\), \(c_i = 0\) if \(i \neq k\)
Characteristic vector (Sharemind)

- There is private value $[k]$. We know that $0 \leq k < \ell$
- Want to obtain vector $([c_0], \ldots, [c_{\ell-1}])$, where $c_k = 1$, $c_i = 0$ if $i \neq k$
- Let $[k]$ be shared over \mathbb{Z}_ℓ, in replicated manner: $((k_2, k_3), (k_1, k_3), (k_1, k_2))$
- Think of each k_i as an element of S_ℓ:
 - k_i, applied to a vector \vec{v}, rotates it k_i positions to the right
 - Hence the application of $k_1 \circ k_2 \circ k_3$ rotates by k positions
- Apply the shuffling protocol, starting from vector $(1, 0, 0, \ldots, 0)$
 - As the initial vector is public, the whole protocol simplifies somewhat
Private array access

Private read
Given $\vec{a} = ([a_1], [a_2], \ldots, [a_m])$ and $[k]$, find $[a_k]$

Private write
- Given $\vec{a} = ([a_1], \ldots, [a_m]), [k]$ and $[x]$
- Find $\vec{b} = ([b_1], \ldots, [b_m])$, where $b_k = x$ and $b_j = a_j$ for $j \neq k$
Private array access

Private read

Given $\mathbf{a} = ([a_1], [a_2], \ldots, [a_m])$ and $[k]$, find $[a_k]$

Private write

- Given $\mathbf{a} = ([a_1], \ldots, [a_m]), [k]$ and $[x]$
- Find $\mathbf{b} = ([b_1], \ldots, [b_m])$, where $b_k = x$ and $b_j = a_j$ for $j \neq k$

Oblivious reads using characteristic vectors

- Turn $[k]$ to a characteristic vector $([c_1], \ldots, [c_m])$
 - For simplicity, assume that m is a power of 2
- Compute the scalar product of \mathbf{a} and \mathbf{c}
Parallel reads and writes

Parallel read from a vector

\[
\text{read}(\lbrack a_1 \rbrack, \ldots, \lbrack a_n \rbrack; \lbrack i_1 \rbrack, \ldots, \lbrack i_m \rbrack) \mapsto (\lbrack a_{i_1} \rbrack, \ldots, \lbrack a_{i_m} \rbrack)
\]

Parallel write to a vector

\[
\text{write}(\lbrack a_1 \rbrack, \ldots, \lbrack a_n \rbrack; \lbrack i_1 \rbrack, \ldots, \lbrack i_m \rbrack; \lbrack v_1 \rbrack, \ldots, \lbrack v_m \rbrack) \mapsto (\lbrack b_1 \rbrack, \ldots, \lbrack b_n \rbrack),
\]

where \(\lbrack \tilde{b} \rbrack\) is \(\lbrack \tilde{a} \rbrack\) after the writing, i.e.

\[
b_j = \begin{cases}
 a_j, & \text{if } j \notin \{i_1, \ldots, i_m\} \\
 v_k, & \text{if } i_k = j
\end{cases}
\]
Parallel reads and writes

Parallel read from a vector

\[
\text{read}(\llbracket a_1 \rrbracket, \ldots, \llbracket a_n \rrbracket; \llbracket i_1 \rrbracket, \ldots, \llbracket i_m \rrbracket) \mapsto (\llbracket a_{i_1} \rrbracket, \ldots, \llbracket a_{i_m} \rrbracket)
\]

Parallel write to a vector

\[
\text{write}(\llbracket a_1 \rrbracket, \ldots, \llbracket a_n \rrbracket; \\
\llbracket i_1 \rrbracket, \ldots, \llbracket i_m \rrbracket; \\
\llbracket v_1 \rrbracket, \ldots, \llbracket v_m \rrbracket; \\
\llbracket p_1 \rrbracket, \ldots, \llbracket p_m \rrbracket) \mapsto (\llbracket b_1 \rrbracket, \ldots, \llbracket b_n \rrbracket),
\]

where \(\llbracket \vec{b} \rrbracket\) is \(\llbracket \vec{a} \rrbracket\) after the writing, i.e.

\[
b_j = \begin{cases}
a_j, & \text{if } j \notin \{i_1, \ldots, i_m\} \\
v_k, & \text{if } i_k = j \text{ and } p_k = \min\{p_\ell \mid i_\ell = j\}\end{cases}
\]

Dec. 2021
Parallel oblivious reading

\[a \]

\[
\begin{array}{cccccccc}
1 & 4 & 9 & 16 & 25 & 36 \\
\end{array}
\]

Let \(\vec{x} = (x_1, \ldots, x_n) \)

Define \(\vec{y} = (y_1, \ldots, y_n) \) by

\[
y_1 = x_1 \\
y_i = y_{i-1} + x_i
\]

\(\vec{y} \) is the prefix-sum of \(\vec{x} \)

Inverse:

\[
x_1 = y_1 \\
x_i = y_i - y_{i-1}
\]
Parallel oblivious reading

Let \(\vec{x} = (x_1, \ldots, x_n) \)

Define \(\vec{y} = (y_1, \ldots, y_n) \) by

\[
y_1 = x_1
\]
\[
y_i = y_{i-1} + x_i
\]

\(\vec{y} \) is the prefix-sum of \(\vec{x} \)

Inverse:

\[
x_1 = y_1
\]
\[
x_i = y_i - y_{i-1}
\]
Prefix-sums and their inverses

- Let $\vec{x} = (x_1, \ldots, x_n)$
- Define $\vec{y} = (y_1, \ldots, y_n)$ by
 - $y_1 = x_1$
 - $y_i = y_{i-1} + x_i$
- \vec{y} is the prefix-sum of \vec{x}
- Inverse:
 - $x_1 = y_1$
 - $x_i = y_i - y_{i-1}$

Let $w = \text{prefixsum}^{-1}(a)$
Parallel oblivious reading

<table>
<thead>
<tr>
<th>a</th>
<th>w</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>36</td>
<td>11</td>
<td>6</td>
</tr>
</tbody>
</table>

$w = \text{prefixsum}^{-1}(a)$
Parallel oblivious reading

<table>
<thead>
<tr>
<th>a</th>
<th>w</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>36</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

\[w = \text{prefixsum}^{-1}(a) \]
Parallel oblivious reading

Let \(\vec{x} = (x_1, \ldots, x_n) \)

Define \(\vec{y} = (y_1, \ldots, y_n) \)

by

\[
y_1 = x_1 \quad y_i = y_{i-1} + x_i
\]

\(\vec{y} \) is the prefix-sum of \(\vec{x} \)

Inverse:

\[
x_1 = y_1 \quad x_i = y_i - y_{i-1}
\]

\(w = \text{prefixsum}^{-1}(a) \)

\(\sigma = \text{sort}(i) \)
Parallel oblivious reading

Let \(\vec{x} = (x_1, \ldots, x_n) \)

Define \(\vec{y} = (y_1, \ldots, y_n) \) by

\[
y_1 = x_1 \\
y_i = y_{i-1} + x_i
\]

\(\vec{y} \) is the prefix-sum of \(\vec{x} \)

Inverse:

\[
x_1 = y_1 \\
x_i = y_i - y_{i-1}
\]

\[w = \text{prefixsum}^{-1}(a) \]

\[\sigma = \text{sort}(i) \]

apply \(\sigma \) to \(w \)
Parallel oblivious reading

<table>
<thead>
<tr>
<th>a</th>
<th>w</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>36</td>
<td>11</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>w</th>
<th>a'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>36</td>
</tr>
</tbody>
</table>

\[w = \text{prefixsum}^{-1}(a) \]
\[\sigma = \text{sort}(i) \]
\[\text{apply } \sigma \text{ to } w \]
\[a' = \text{prefixsum}(w) \]
Parallel oblivious reading

<table>
<thead>
<tr>
<th>a</th>
<th>w</th>
<th>i</th>
<th>a'</th>
<th>a'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>5</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>36</td>
<td>11</td>
<td>6</td>
<td>9</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w = prefixsum$^{-1}(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma = \text{sort}(i)$</td>
</tr>
<tr>
<td>apply σ to w</td>
</tr>
<tr>
<td>$a' = \text{prefixsum}(w)$</td>
</tr>
<tr>
<td>apply σ^{-1} to a'</td>
</tr>
</tbody>
</table>

Dec. 2021
Complexity of reading

- Sorting: $O((m + n) \log(m + n))$ in $O(\log(m + n))$ rounds
- The rest is $O(m + n)$ in $O(1)$ rounds

Overhead of a single read

$O(\log n)$, if $m = \Theta(n)$
If $m \gg n$, then run several parallel reads in parallel
Complexity of reading

- Sorting: $O((m + n) \log(m + n))$ in $O(\log(m + n))$ rounds
- The rest is $O(m + n)$ in $O(1)$ rounds

Overhead of a single read

$O(\log n)$, if $m = \Theta(n)$

If $m \gg n$, then run several parallel reads in parallel

Application-level optimization

- Sorting requires $(\lceil i_1 \rceil, \ldots, \lceil i_m \rceil)$ and n. It does not require $\lfloor \bar{a} \rfloor$
- If there are reads from several arrays according to the same indices, then we can sort only once

Read m values from array of length n
Parallel oblivious writing

\[
\begin{array}{c}
a \\
1 \\
4 \\
9 \\
16 \\
25 \\
36 \\
\end{array}
\]
Parallel oblivious writing

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>i</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

\(v^a\) sort by \(i\); \(v^a\) sort by \(p\)
Parallel oblivious writing

<table>
<thead>
<tr>
<th>a</th>
<th>i</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>99</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>99</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>99</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>99</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Dec. 2021
Parallel oblivious writing

<table>
<thead>
<tr>
<th>v</th>
<th>a</th>
<th>i</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>i</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>99</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>99</td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>99</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>99</td>
</tr>
</tbody>
</table>

sort by $i; p$
Parallel oblivious writing

\[
\begin{array}{ccc}
\begin{array}{cccc}
\text{v} & a & i & p \\
1 & 1 & 99 & 99 \\
4 & 2 & 99 & 99 \\
9 & 3 & 99 & 99 \\
16 & 4 & 99 & 99 \\
25 & 5 & 99 & 99 \\
36 & 6 & 99 & 99 \\
17 & 3 & 4 & 99 \\
8 & 4 & 3 & 99 \\
21 & 3 & 5 & 99 \\
5 & 2 & 1 & 99 \\
33 & 5 & 2 & 99 \\
\end{array}
\end{array}
\begin{array}{cccc}
\begin{array}{cccc}
a & i & p & j \\
1 & 1 & 99 & 0 \\
5 & 2 & 1 & 0 \\
4 & 2 & 99 & 1 \\
17 & 3 & 4 & 0 \\
21 & 3 & 5 & 1 \\
9 & 3 & 99 & 1 \\
8 & 4 & 3 & 0 \\
16 & 4 & 99 & 1 \\
33 & 5 & 2 & 0 \\
25 & 5 & 99 & 1 \\
36 & 6 & 99 & 0 \\
\end{array}
\end{array}
\end{array}
\]

sort by \(i; p \)

\[
\begin{align*}
 j_n &= (i_n \equiv i_{n-1}) \\
 j_1 &= 0
\end{align*}
\]
Parallel oblivious writing

sort by $i; p$

$j_n = (i_n \equiv i_{n-1})$

$j_1 = 0$

sort by j
Complexity of writing

- First sort: $O((m + n) \log(m + n))$ in $O(\log(m + n))$ rounds
- Second sort (bits): $O(m + n)$ in $O(1)$ rounds
- The rest is $O(m + n)$ in $O(1)$ rounds
- Same overhead as for reading

Application-level optimization

- First sort requires $(\llbracket i_1 \rrbracket, \ldots, \llbracket i_m \rrbracket, (\llbracket p_1 \rrbracket, \ldots, \llbracket p_m \rrbracket)$ and n
- First sort does not require $\llbracket \vec{a} \rrbracket$ and $\llbracket \vec{v} \rrbracket$
- If there are writes to several arrays according to the same indices, then may sort only once

Write m values to array of length n
Counting sort (by single bit)

<table>
<thead>
<tr>
<th>a</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
</tr>
</tbody>
</table>
Counting sort (by single bit)

\[
\begin{array}{|c|c|c|}
\hline
a & j & jj \\
\hline
1 & 1 & 1 \\
4 & 0 & 0 \\
9 & 0 & 0 \\
16 & 1 & 1 \\
25 & 1 & 1 \\
36 & 0 & 0 \\
17 & 1 & 1 \\
8 & 0 & 0 \\
21 & 0 & 0 \\
5 & 0 & 0 \\
33 & 1 & 1 \\
\hline
\end{array}
\]

\[jj_n = b2l(j_n)\]
Counting sort (by single bit)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[j j_n = \text{b2l}(j_n) \]
\[\overline{jj}_n = 1 - j j_n \]
Counting sort (by single bit)

<table>
<thead>
<tr>
<th>a</th>
<th>j</th>
<th>jj</th>
<th>jj</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

$$jj_n = \text{b2l}(j_n)$$

$$\overline{jj}_n = 1 - jj_n$$

$$\overline{c} = \text{prefixsum}(\overline{jj})$$
Counting sort (by single bit)

\[
\begin{array}{ccccccc}
 a & j & jj & j\mathring{\jmath} & \vec{c} & c \\
 1 & 1 & 1 & 0 & 0 & 7 \\
 4 & 0 & 0 & 1 & 1 & 8 \\
 9 & 0 & 0 & 1 & 2 & 8 \\
 16 & 1 & 1 & 0 & 2 & 8 \\
 25 & 1 & 1 & 0 & 2 & 9 \\
 36 & 0 & 0 & 1 & 3 & 10 \\
 17 & 1 & 1 & 0 & 3 & 10 \\
 8 & 0 & 0 & 1 & 4 & 11 \\
 21 & 0 & 0 & 1 & 5 & 11 \\
 5 & 0 & 0 & 1 & 6 & 11 \\
 33 & 1 & 1 & 0 & 6 & 11 \\
\end{array}
\]

\[jj_n = b2I(j_n)\]
\[\overline{jj}_n = 1 - jj_n\]
\[\overline{\vec{c}} = \text{prefixsum}(\overline{jj})\]
\[\vec{c} = \text{prefixsum}(jj)\]
Counting sort (by single bit)

<table>
<thead>
<tr>
<th>a</th>
<th>j</th>
<th>jj</th>
<th>j</th>
<th>c</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

\[jj_n = b2l(j_n) \]
\[\overline{jj}_n = 1 - jj_n \]
\[\overline{c} = \text{prefixsum}(\overline{jj}) \]
\[\overline{c} = \text{prefixsum}(\overline{jj}) \]
\[p_n = jj_n \oplus c_n : \overline{c}_n \]
Counting sort (by single bit)

<table>
<thead>
<tr>
<th>a</th>
<th>j</th>
<th>jj</th>
<th>̄jj</th>
<th>c</th>
<th>̄c</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Random shuffle

\[jj_n = b2l(j_n) \]
\[̄jj_n = 1 - jj_n \]
\[̄c = \text{prefixsum}(jj) \]
\[̄c = \text{prefixsum}(jj) \]
\[p_n = jj_n ? c_n : ̄c_n \]
shuffle \(\vec{a}, \vec{p} \)
Counting sort (by single bit)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>7</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>a</td>
</tr>
<tr>
<td>j</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>j</td>
<td>36</td>
<td>3</td>
<td>16</td>
<td>8</td>
<td>33</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>jj</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>jj</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>jj</td>
<td>36</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>jj</td>
<td>36</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>jj</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>jj</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>jj</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>jj</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

\[jj_n = b2I(j_n) \]
\[\overline{jj}_n = 1 - jj_n \]
\[\overline{c} = \text{prefixsum}(\overline{jj}) \]
\[\overline{c} = \overrightarrow{\text{prefixsum}}(\overline{jj}) \]
\[p_n = jj_n \oplus c_n : \overline{c}_n \]
shuffle \(\overline{a}, \overline{p} \)
declassify \(\overline{p} \)
Counting sort (by single bit)

<table>
<thead>
<tr>
<th>a</th>
<th>j</th>
<th>jj</th>
<th>jj</th>
<th>c</th>
<th>c</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
jj_n &= b2l(j_n) \\
\overline{jj}_n &= 1 - jj_n \\
\overline{c} &= \text{prefixsum}(\overline{jj}) \\
\tilde{c} &= \text{prefixsum}(\tilde{jj}) \\
p_n &= jj_n ? c_n : \overline{c}_n \\
\text{shuffle } \tilde{a}, \tilde{p} \\
\text{declassify } \tilde{p} \\
\text{reorder } \tilde{a} \text{ by } \tilde{p}
\end{align*}
\]
Up-conversion in Sharemind

- Given $[a] \in \mathbb{Z}_{2^n}$, want to obtain $[a] \in \mathbb{Z}_{2^m}$, where $m > n$
- Just left-filling the shares $[a]_i$ with zeroes does not work
 - This would give a sharing of a, or $a + 2^n$, or $a + 2 \cdot 2^n$
 - Start with `ReshareToTwo`. Then $a + 2 \cdot 2^n$ does not happen
- We need to find the “overflow” $[\lambda] \in \mathbb{Z}_2$ of the sharing $[a]$
 - We can then subtract $2^n \cdot [\lambda]_{2^m-n}$ from $[a]_{2^m}$
Finding the overflow of $[a]$, shared between P_2 and P_3

- P_2 has $a_2 \in \mathbb{Z}_{2^n}$. P_3 has $a_3 \in \mathbb{Z}_{2^n}$. Overflows, iff $a_2 \geq 2^n - a_3$
- Hence we have to compare a_2 and $-a_3$
 - Because $2^n - a_3 = (-a_3) \mod 2^n$
 - ...unless $a_3 = 0$, which has to be handled separately
- The parties execute boolean circuit for “greater or equal”, comparing a_2 and $-a_3$
- They obtain $[\lambda] \in \mathbb{Z}_2$
- If $a_3 = 0$, then P_3 flips his share in $[\lambda]$
 - Comparison would return “true”. Correct answer is “false”
Right-shift in Sharemind

- Given $[a] \in \mathbb{Z}_{2^n}$, find $[a/2^k]$
- Chop off the last k bits of shares, and add the overflow of the last k bits of shares

Fix-point numbers

- m bits before the point, n bits after. Representation: sharing over $\mathbb{Z}_{2^{m+n}}$
- Addition: usual addition modulo $\mathbb{Z}_{2^{m+n}}$
- Multiplication of $[x]$ and $[y]$:
 1. Up-convert $[x]$ and $[y]$ to $\mathbb{Z}_{2^{2(m+n)}}$
 2. Multiply normally, resulting in $[z]$
 3. Return $[z/2^n] \mod 2^{m+n} \in \mathbb{Z}_{2^{m+n}}$
Reminder: SPDZ

- i-th party has a private value $\alpha_i \in \mathbb{F}$
 - Denote $\alpha = \alpha_1 + \cdots + \alpha_n$
Reminder: SPDZ

- i-th party has a private value $\alpha_i \in \mathbb{F}$
 - Denote $\alpha = \alpha_1 + \cdots + \alpha_n$
- Private representation $[v]$ of a value $v \in \mathbb{F}$ is the following:
 - i-th party privately holds $[v]_i = ([v]_i, \langle v \rangle_i) \in \mathbb{F}^2$
 - $[v]_1 + \cdots + [v]_n = v$
 - $\langle v \rangle_1 + \cdots + \langle v \rangle_n = \alpha \cdot v$
Reminder: SPDZ

- i-th party has a private value $\alpha_i \in \mathbb{F}$
 - Denote $\alpha = \alpha_1 + \cdots + \alpha_n$
- Private representation $[[v]]$ of a value $v \in \mathbb{F}$ is the following:
 - i-th party privately holds $[[v]]_i = ([v], \langle v \rangle_i) \in \mathbb{F}^2$
 - $[v]_1 + \cdots + [v]_n = v$
 - $\langle v \rangle_1 + \cdots + \langle v \rangle_n = \alpha \cdot v$
- Linear operations with private values are done locally by parties
Reminder: SPDZ

○ i-th party has a private value $\alpha_i \in \mathbb{F}$
 ○ Denote $\alpha = \alpha_1 + \cdots + \alpha_n$

○ Private representation $[v]_i$ of a value $v \in \mathbb{F}$ is the following:
 ○ i-th party privately holds $[v]_i = ([v]_i, \langle v \rangle_i) \in \mathbb{F}^2$
 ○ $[v]_1 + \cdots + [v]_n = v$
 ○ $\langle v \rangle_1 + \cdots + \langle v \rangle_n = \alpha \cdot v$

○ Linear operations with private values are done locally by parties
○ A private value can be opened to all parties, or to a single party
 ○ Inconsistencies are detected
Reminder: SPDZ

- i-th party has a private value $\alpha_i \in \mathbb{F}$
 - Denote $\alpha = \alpha_1 + \cdots + \alpha_n$

- Private representation $[v]_i$ of a value $v \in \mathbb{F}$ is the following:
 - i-th party privately holds $[v]_i = ([v]_i, \langle v \rangle_i) \in \mathbb{F}^2$
 - $[v]_1 + \cdots + [v]_n = v$
 - $\langle v \rangle_1 + \cdots + \langle v \rangle_n = \alpha \cdot v$

- Linear operations with private values are done locally by parties
- A private value can be *opened* to all parties, or to a single party
 - Inconsistencies are detected

- Multiplication triples ("Beaver triples") are used to multiply private values
 - Multiplication triples are generated during the *offline phase* of the protocol
Reminder: SPDZ

- i-th party has a private value $\alpha_i \in \mathbb{F}$
 - Denote $\alpha = \alpha_1 + \cdots + \alpha_n$
- Private representation $\llbracket v \rrbracket$ of a value $v \in \mathbb{F}$ is the following:
 - i-th party privately holds $\llbracket v \rrbracket_i = ([v]_i, \langle v \rangle_i) \in \mathbb{F}^2$
 - $[v]_1 + \cdots + [v]_n = v$
 - $\langle v \rangle_1 + \cdots + \langle v \rangle_n = \alpha \cdot v$
- Linear operations with private values are done locally by parties
- A private value can be opened to all parties, or to a single party
 - Inconsistencies are detected
- Multiplication triples ("Beaver triples") are used to multiply private values
 - Multiplication triples are generated during the offline phase of the protocol
- Oblivious permutations?
Permute-and-Share

- P_1 has permutation π of m elements

$$\overrightarrow{y} \in \mathbb{F}^m$$

satisfying $\pi(\overrightarrow{x}) = \overrightarrow{y} + \overrightarrow{z}$

- If one party is malicious, then still private, but not necessarily correct
Permute-and-Share

- P_1 has permutation π of m elements

\[P_1 \xrightarrow{\pi} P_2 \]

\[\vec{y} \in \mathbb{F}^m \quad \text{satisfying} \quad \pi(\vec{x}) = \vec{y} + \vec{z} \]

- If one party is malicious, then still private, but not necessarily correct
- Protocols for Permute-and-Share have been proposed
 - Based e.g. on oblivious transfer and permutation networks
 - Also with optimizations for multiple instances using the same π
Applying a permutation known to k-th party.

\[\pi \quad P_k \quad [\vec{v}]_i, \langle \vec{v} \rangle_i \quad P_i \]
Applying a permutation known to \(k \)-th party

\[[\vec{v}]_i, \langle \vec{v} \rangle_i \]

\(P_k \) runs this protocol with all \(P_i \) in parallel

\(P_i \) obtains \([\vec{w}]_i \) as result

\(P_k \) obtains \([\vec{s}]_1, \ldots, [\vec{s}]_n \) (except \([\vec{s}]_k \))

\(P_k \) defines \(\vec{y} \) additively share \(\pi([\vec{v}]_k) \)
Applying a permutation known to k-th party

\[
\begin{align*}
\Pi &\quad \vec{y}, \vec{x}, \vec{z} \\
\Pi &\quad \vec{y}, \vec{x}, \vec{z} \\
P_k &\quad \vec{y} \\
P_i &\quad \vec{y} \\
[\vec{v}]_i, \langle \vec{v} \rangle_i &\quad \text{offline} \\
&\quad \text{online}
\end{align*}
\]
Applying a permutation known to k-th party

π-th party

\vec{y}, \vec{x}, \vec{z}

π-th party

\vec{y}, \vec{x}, \vec{z}

offline

online

P_k, $[\vec{v}]_i$, $\langle \vec{v} \rangle_i$,

P_i, $[\vec{v}]_i - \vec{x}$,

$\langle \vec{v} \rangle_i - \vec{x}$

P_k runs this protocol with all P_i in parallel $i \in \{1, \ldots, n\}$ except $J_{\vec{s}_k}$ P_k defines $J_{\vec{s}_k} \leftarrow \pi(\langle \vec{v} \rangle_k)$ P_k defines $J_{\vec{w}_k} \leftarrow \sum_{i=1}^{n} J_{\vec{s}_i}$

Private, but not necessarily correct Dec. 2021
Applying a permutation known to k-th party

\[
\begin{align*}
\pi \vec{y} &\quad \vec{x}, \vec{z} \\
P_k &\quad [\vec{v}]_i - \vec{x}, \langle \vec{v} \rangle_i - \vec{x} \\
P_i &\quad \text{[\vec{v}]_i, } \langle \vec{v} \rangle_i \\
\end{align*}
\]

\[
\begin{align*}
[\vec{s}]_i &\leftarrow \pi([\vec{v}]_i - \vec{x}) + \vec{y} \\
\langle \vec{s} \rangle_i &\leftarrow \pi(\langle \vec{v} \rangle_i - \vec{x}) + \vec{y} \\
[\vec{w}]_i &\leftarrow \vec{z} \\
\langle \vec{w} \rangle_i &\leftarrow \vec{z} \\
\end{align*}
\]

$[\vec{s}]_i, [\vec{w}]_i$ additively share $\pi([\vec{v}]_i)$
Applying a permutation known to k-th party

\[\pi \vec{y} \]
\[\pi \vec{x}, \vec{z} \]
\[\vec{v}_i \]
\[\langle \vec{v} \rangle_i \]

\[P_k \]
\[P_i \]

\[[\vec{v}]_i - \vec{x}, \langle \vec{v} \rangle_i - \vec{x} \]
\[[\vec{v}]_i, \langle \vec{v} \rangle_i \]

\[[\vec{s}]_i \leftarrow \pi([\vec{v}]_i - \vec{x}) + \vec{y} \]
\[[\vec{w}]_i \leftarrow \vec{z} \]
\[\langle \vec{s} \rangle_i \leftarrow \pi(\langle \vec{v} \rangle_i - \vec{x}) + \vec{y} \]
\[\langle \vec{w} \rangle_i \leftarrow \vec{z} \]
\[[\vec{s}]_i, [\vec{w}]_i \text{ additively share } \pi([\vec{v}]_i) \]

\(P_k \) runs this protocol with all \(P_i \) in parallel

\(i \in \{1, \ldots, n\}\backslash\{k\} \)
Applying a permutation known to \(k \)-th party

\[
\begin{align*}
\pi & : \vec{y}, \vec{x}, \vec{z} \\
\vec{v}_i & : [\vec{v}]_i, \langle \vec{v} \rangle_i \\
\vec{w}_i & : [\vec{w}]_i \\
\vec{s}_i & : [\vec{s}]_i, [\vec{w}]_i
\end{align*}
\]

- \(P_k \) runs this protocol with all \(P_i \) in parallel
 - \(i \in \{1, \ldots, n\} \setminus \{k\} \)
- \(P_i \) obtains \([\vec{w}]_i\) as result
- \(P_k \) obtains \([\vec{s}]_1, \ldots, [\vec{s}]_n\) (except \([\vec{s}]_k\))

\[
\begin{align*}
[s]_i & \leftarrow \pi([\vec{v}]_i - \vec{x}) + \vec{y} \\
\langle s \rangle_i & \leftarrow \pi(\langle \vec{v} \rangle_i - \vec{x}) + \vec{y} \\
[w]_i & \leftarrow \vec{z} \\
\langle w \rangle_i & \leftarrow \vec{z} \\
[s]_i, [w]_i \text{ additively share } \pi([\vec{v}]_i)
\end{align*}
\]
Applying a permutation known to \(k\)-th party

\[
\begin{align*}
\vec{s}_i &\leftarrow \pi ([\vec{v}]_i - \vec{x}) + \vec{y} \\
\langle \vec{s}\rangle_i &\leftarrow \pi (\langle \vec{v}\rangle_i - \vec{x}) + \vec{y} \\
[\vec{s}]_i, [\vec{w}]_i &\text{ additively share } \pi([\vec{v}]_i)
\end{align*}
\]

\(\oplus\) \(P_k\) runs this protocol with all \(P_i\) in parallel

\(\oplus\) \(i \in \{1, \ldots, n\}\setminus\{k\}\)

\(\oplus\) \(P_i\) obtains \([\vec{w}]_i\) as result

\(\oplus\) \(P_k\) obtains \([\vec{s}]_1, \ldots, [\vec{s}]_n\) (except \([\vec{s}]_k\))

\(\oplus\) \(P_k\) defines \([\vec{s}]_k \leftarrow \pi([\vec{v}]_k)\)

\(\oplus\) \(P_k\) defines \([\vec{w}]_k \leftarrow \sum_{i=1}^{n} [\vec{s}]_i\)
Applying a permutation known to k-th party

- P_k runs this protocol with all P_i in parallel
 - $i \in \{1, \ldots, n\} \setminus \{k\}$
- P_i obtains $[\vec{w}]_i$ as result
- P_k obtains $[\vec{s}]_1, \ldots, [\vec{s}]_n$ (except $[\vec{s}]_k$)
- P_k defines $[\vec{s}]_k \leftarrow \pi([\vec{v}]_k)$
- P_k defines $[\vec{w}]_k \leftarrow \sum_{i=1}^{n} [\vec{s}]_i$
- Private, but not necessarily correct

\[
\begin{align*}
[\vec{s}]_i & \leftarrow \pi([\vec{v}]_i - \vec{x}) + \vec{y} \\
\langle \vec{s} \rangle_i & \leftarrow \pi(\langle \vec{v} \rangle_i - \vec{x}) + \vec{y} \\
[\vec{s}]_i, [\vec{w}]_i & \text{ additively share } \pi([\vec{v}]_i)
\end{align*}
\]
Oblivious permutation (1/2)

- Private representation $\|\pi\|$ of permutation π is the following:
 - i-th party holds a random permutation π_i, subject to $\pi_1 \circ \cdots \circ \pi_n = \pi$

Applying $J[\pi]K$ to $J\vec{v}K$:
- Apply π_1 (known to P_1) to $J\vec{v}K$,
- Apply π_2 (known to P_2) to the result,
- ...
- Apply π_n (known to P_n) to the result, giving $J\vec{w}K$

This is private. But how to be sure that \vec{v} and \vec{w} have the same elements?
Oblivious permutation (1/2)

- Private representation $[[\pi]]$ of permutation π is the following:
 - i-th party holds a random permutation π_i, subject to $\pi_1 \circ \cdots \circ \pi_n = \pi$

- Applying $[[\pi]]$ to $[\vec{v}]$:
 - Apply π_1 (known to P_1) to $[\vec{v}]$,
 - Apply π_2 (known to P_2) to the result,
 - ...
 - Apply π_n (known to P_n) to the result, giving $[\vec{w}]$
Oblivious permutation (1/2)

- Private representation $[[\pi]]$ of permutation π is the following:
 - i-th party holds a random permutation π_i, subject to $\pi_1 \circ \cdots \circ \pi_n = \pi$
- Applying $[[\pi]]$ to $[[\vec{v}]]$:
 - Apply π_1 (known to P_1) to $[[\vec{v}]]$,
 - Apply π_2 (known to P_2) to the result,
 - ...,
 - Apply π_n (known to P_n) to the result, giving $[[\vec{w}]]$
- This is private. But how to be sure that \vec{v} and \vec{w} have the same elements?
Permutation checking

- Let \(\vec{v} \in \mathbb{F}^m \). Define polynomial \(p_{\vec{v}}(X) \in \mathbb{F}[X] \) as
 \[
p_{\vec{v}}(X) = \prod_{i=1}^{m} (X - v_i)
 \]

- \(\vec{v} \) and \(\vec{w} \) are permutations of each other, iff \(p_{\vec{v}}(X) = p_{\vec{w}}(X) \)
Permutation checking

Let \(\vec{v} \in \mathbb{F}^m \). Define polynomial \(p_{\vec{v}}(X) \in \mathbb{F}[X] \) as

\[
p_{\vec{v}}(X) = \prod_{i=1}^{m} (X - v_i)
\]

\(\vec{v} \) and \(\vec{w} \) are permutations of each other, iff \(p_{\vec{v}}(X) = p_{\vec{w}}(X) \)

If \(|\mathbb{F}| \gg m \), then this equality check of polynomials can be done as follows:

- Pick random \(r \leftarrow \mathbb{F} \). Check that \(p_{\vec{v}}(r) = p_{\vec{w}}(r) \)
- Probability of false positive: \(m/|\mathbb{F}| \)
Oblivious permutation (2/2)

- Pick fresh random \([r], [r']\)
- Compute
 \[
 [r'] \cdot \left(\prod_{i=1}^{m} ([r] - [v_i]) - \prod_{i=1}^{m} ([r] - [w_i]) \right)
 \]
- Open the result, abort if \(!= 0\)
 - Random \(r'\) masks any possible leaks, if the result is not 0
Permuting two vectors with the same permutation

- \(\vec{w}, \vec{w}' \) are the same permutation of \(\vec{v}, \vec{v}' \), iff
 \[
 \prod_{i=1}^{m} (X - v_i - Yv'_i) = \prod_{i=1}^{m} (X - w_i - Yw'_i)
 \]

- Hence, after applying the first half of the permutation protocol to both \(\vec{v} \) and \(\vec{v}' \), we
 - Pick fresh random \([r], [s], [r']\)
 - Open \(r \) and \(s \)
 - Compute
 \[
 [r'] \cdot \left(\prod_{i=1}^{m} (r - [v_i] - s[v'_i]) - \prod_{i=1}^{m} (r - [w_i] - s[w'_i]) \right)
 \]
 - Open the result, abort if \(\neq 0 \)
Bits in multiple fields

- Want: \((\lceil b \rceil_p, \lceil b \rceil_{2^\ell})\) for \(b \in \{0, 1\}\)
 - i.e. the same bit shared over both \(\mathbb{Z}_p\) and \(\mathbb{F}_{2^\ell}\)
 - These would be useful for mixed boolean / arithmetic computations

- **Doubly authenticated bit**: “daBit”
- Let SPDZ instances be set up for computing in \(\mathbb{Z}_p\), and in \(\mathbb{F}_{2^\ell}\)
- “extended daBit” (edaBit): \((\lceil b \rceil_p, \lceil b_0 \rceil_{2^\ell}, \ldots, \lceil b_m \rceil_{2^\ell})\), such that \(b = \sum_i b_i 2^i\)
generating many daBits

1. Each computing party P_j inputs $(b_{j,1}, \ldots, b_{j,m})$ to both SPDZ instances
2. Cut-and-choose: open C positions in the vectors input by parties
 - Same positions for all parties
3. Combine: Let $b_i \leftarrow \bigoplus_{j=1}^n b_{j,i}$ in both SPDZ instances
 - $x \oplus y = x + y - 2xy$ in \mathbb{Z}_p; requires a multiplication triple to compute
4. Pairwise check: put bits into buckets of size B, use all later bits of a bucket to check consistency of the first, keep only the first
 - Compute and open $b_1 \oplus b_k$ in both SPDZ instances; make sure they are the same
 - Again needs a multiplication triple modulo p
5. Result: $(m - C)/B$ daBits

Optimization: (some of) the used multiplication triples do not need to be pairwise-checked themselves
Arithmetic circuits (over \mathbb{Z}_p) for ZK proofs
Generating a bit

Set-up

- Some inputs of the circuit are “instance”, the rest are “witness”
- The circuit has one or more outputs
- The circuit accepts an instance-witness pair, if all outputs are 0
- When encoding our problem as a circuit, we may add more inputs, related to existing inputs
 - In instance: we can be sure that they are related in the correct way
 - In witness: no correctness guarantees

- Goal: make sure that input w to the circuit belongs to \{0, 1\}
- Technique: Let the circuit compute $w \cdot w - w$ and output the result
Inversion

\[y = x - 1 \]

Want: \[\square \leftarrow x^{-1} \]
Inversion

Want: □ ← x^{-1}

Extend the witness
Inversion

Want: \[\square \leftarrow x^{-1} \]

- Extend the witness
- The prover is able to put \[y = x^{-1} \]
Inversion

Inputs

Outputs

Want: \(\square \leftarrow x^{-1} \)

Extend the witness

The prover is able to put \(y = x^{-1} \)

And the circuit can check that
Equality check (actually: check of being zero)

Want: □ ∈ \{0, 1\}; □ = 1 \text{ iff } x = 0

Dec. 2021
Equality check (actually: check of being zero)

Inputs

- b

Outputs

- x

Want: $\square \in \{0, 1\}$

- $\square = 1$ iff $x = 0$

- Extend the witness

Dec. 2021
Equality check (actually: check of being zero)

Want: \(\square \in \{0, 1\}; \)
\(\square = 1 \) iff \(x = 0 \)

Extend the witness

Check: if \(b = 1 \), then \(x = 0 \)
Equality check (actually: check of being zero)

Want: $\square \in \{0, 1\}$; $\square = 1$ iff $x = 0$

Extend the witness

Check: if $b = 1$, then $x = 0$

Check: if $b = 0$, then the inverse of x must exist
Permutations

- The entries of the vectors \vec{v} and \vec{w} (length: m) are available in the arithmetic circuit.
- Prover wants to convince verifier that \vec{w} is a permutation of \vec{v}.
- Sometimes also wants to explicitly have “the permutation π, s.t. $\pi(\vec{v}) = \vec{w}$” in order to show that several vectors have been permuted in the same manner.
- Two possible solutions:
 - permutation networks
 - Also applicable to some MPC protocols, e.g. GC.
 - Check that certain polynomials are equal
 - \vec{w} is a permutation of \vec{v} iff $\prod_{i=1}^{m}(X - v_i) = \prod_{i=1}^{m}(X - w_i)$.
Checking the equality of polynomials

- Goes somewhat out of our model
- Arithmetic circuit contains the computation and output of

\[
\prod_{i=1}^{m} (r - v_i) - \prod_{i=1}^{m} (r - w_i),
\]

where \(r \) is an input to the arithmetic circuit.

- Only after Prover has committed to everything determining \(\vec{v} \) and \(\vec{w} \), will Verifier fix the value of \(r \)
- The ZK Proof technique must able to handle such multi-step definition of inputs
Permutation networks

Binary switch

- Two “data” inputs, one “control” input, two “data” outputs
 - Data: elements of \mathbb{Z}_p. Control: a boolean
- If “control” is true, then works as $(x, y) \mapsto (x, y)$, otherwise $(x, y) \mapsto (y, x)$
 - Can be realized in an arithmetic circuit with a single multiplication

- Connect a bunch of binary switches together, obtaining a network
 - Let it have m inputs and m outputs
 - Internally, all fan-ins and fan-out are 1
- It realizes a permutation of m values. “Control” inputs allow to choose, which one
- Want: a network of small size (and depth), able to realize any permutation
Waksman networks

- $m \times m$ Waksman network — a permutation network with m inputs and outputs
- 1×1 network — a single wire. 2×2 network — a single switch

Number of switches:
$m \log m - m + 1$, if m is a power of two

Source

Dec. 2021
From RAM program to circuit

- Processor
 - Registers
 - ALU

- Code

- Memory

- fetch(pc)
- store(addr,val)
- load(addr)
From RAM program to circuit

Relation R states:
For each time moment:
- ALU computes correctly
- Registers’ values are correct
- Correct store is generated if fetch and load work correctly
From RAM program to circuit

Relation R states:
For each time moment:
- ALU computes correctly
- Registers’ values are correct
- Correct store is generated if fetch and load work correctly

Relation R states:
For each time moment:
for each address:
- if a load from this address is done
- then the value is the same that was most recently stored there
loads and stores match

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
</tbody>
</table>
loads and stores match

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
</tbody>
</table>

Sort by addr, time

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
</tbody>
</table>
loads and stores match

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
</tbody>
</table>

Sort by addr, time

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
</tbody>
</table>

Relation R states:
- For each row:
 - if op = load then
 - val = val_{prev} &&
 - addr = addr_{prev}
loads and stores match

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
</tbody>
</table>

Sort by addr, time

Include permutation as part of witness

Relation R

- applies permutation
- checks sortedness

<table>
<thead>
<tr>
<th>time</th>
<th>addr</th>
<th>op</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>store</td>
<td>v1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>load</td>
<td>v1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>store</td>
<td>v3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>load</td>
<td>v3</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>store</td>
<td>v5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>load</td>
<td>v5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>store</td>
<td>v2</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>store</td>
<td>v4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>load</td>
<td>v4</td>
</tr>
</tbody>
</table>

Relation R states:
For each row:
- if op = load then
- val = val\text{prev}

 \&\&

 addr = addr\text{prev}
Reminder: ZKP from Garbled circuits

- V becomes the garbler for the circuit for R
 - Outputs “false” and “true” have secret encodings
- V and P run OT protocols for P to learn the keys corresponding to the bits of w
- V sends the keys corresponding to the bits of x to P
- P evaluates the circuit and obtains the result T; commits to it
- V sends all keys to P; P checks that the circuit was correctly garbled
 - ZK is a variant of 2PC, where V has no secrets
- P opens the commitment of T to V
Stacked garbling

- Let P want to prove $R_1 \lor \cdots \lor R_m$, let C_i be circuit for R_i
 - Suppose P is able to prove R_t
- Verifier picks seeds r_1, \ldots, r_m, generates garbled circuits G_1, \ldots, G_m
 - Assume that G_1, \ldots, G_m all have the same length as bit-strings
 - Also assume they all take the same inputs
- Verifier sends $G_1 \oplus \cdots \oplus G_m$ to Prover
- V & P run $(m - 1)$-out-of-m OT, Prover learns $r_1, \ldots, r_t - 1, r_t + 1, \ldots, r_m$
 - Possible implementation: run 1-out-of-2 OT, m times. Let r_0 be a random string
 - For i-th OT, V’s inputs are (r_i, r_0)
 - P is later required to show the knowledge of r_0
- P now gets all G_1, \ldots, G_m
 - Also gets all keys, and the labels T_i for “true” for $G_1, \ldots, G_{t-1}, G_{t+1}, \ldots, G_m$
Stacked garbling (cont.)

- V & P have to run OT for P to learn the key $k_{i,t}^{b_i}$ corresponding to bit w_i
 - P’s (as Receiver) input: b_i
 - V’s (as Sender) inputs: $k_{i,1}^0 \oplus \cdots \oplus k_{i,m}^0$ and $k_{i,1}^1 \oplus \cdots \oplus k_{i,m}^1$

- P already knows the keys $k_{i,1}^{b_i}, \ldots, k_{i,t-1}^{b_i}, k_{i,t+1}^{b_i}, \ldots, k_{i,m}^{b_i}$, and can thus find $k_{i,t}^{b_i}$

- P evaluates the circuit and learns T_t

- P commits to $r_0 \| T_1 \| \cdots \| T_m$

- Continue with the openings as usual

Remark

This also generalizes to “normal” two-party computation [ePrint 2020/973].

- A wire label may serve as seed for garbling a subcircuit
More specific tricks
Generate random non-zero value and its inverse in MPC over \mathbb{Z}_p

- Generate random $[r], [s] \in \mathbb{Z}_p$. Compute $[rs]$ and declassify it.
- If $rs = 0$, then start over.
- Output $[r]$ and $(rs)^{-1} \cdot [s]$.
Inversion in MPC over \mathbb{Z}_p

- Given $[x] \in \mathbb{Z}_p$. It is known that $x \neq 0$. Want $[y] \in \mathbb{Z}_p$, such that $y = x^{-1}$
- Generate a random $[r] \in \mathbb{Z}_p$
- Compute $[rx]$ and declassify it
- If $rx = 0$, then start over
- Return $(rx)^{-1} \cdot [r]$
Inverting a matrix in MPC over \mathbb{Z}_p

- The entries of a square matrix X have been shared. We can write

$$[X] = \begin{pmatrix}
[x_{11}] & [x_{12}] & \cdots & [x_{1n}] \\
[x_{21}] & [x_{22}] & \cdots & [x_{2n}] \\
\vdots & \vdots & \ddots & \vdots \\
[x_{n1}] & [x_{n2}] & \cdots & [x_{nn}]
\end{pmatrix}$$

- We want to get the secret-shared entries of X^{-1}
- Generate a random invertible $[R] \in \mathbb{Z}_p^{n \times n}$
 - Similarly to generating random non-zero values
- Compute $[Y] = [X] \cdot [R]$ and declassify it
- Return $[R] \cdot Y^{-1}$
 - This involves only linear computations
Long multiplication in constant rounds

- Given $[x_1], \ldots, [x_n] \in \mathbb{Z}_p$, $x_i \neq 0$. Find $[y] = [x_1] \cdots [x_n]$
- Generate random $[r_1], \ldots, [r_n]$ together with $[r_1^{-1}], \ldots, [r_n^{-1}]$
 - Also denote $r_0 = 1$
- Compute $[s_i] = [r_{i-1}^{-1}] \cdot [x_i] \cdot [r_i]$ and declassify them
- Compute $s = s_1 \cdots s_n$
- Return $s \cdot [r_n^{-1}]$
Long multiplication in constant rounds

- Given $[x_1], \ldots, [x_n] \in \mathbb{Z}_p$, $x_i \neq 0$. Find $[y] = [x_1] \cdots [x_n]$.
- Generate random $[r_1], \ldots, [r_n]$ together with $[r_1^{-1}], \ldots, [r_n^{-1}]$.
 - Also denote $r_0 = 1$.
- Compute $[s_i] = [r_{i-1}^{-1}] \cdot [x_i] \cdot [r_i]$ and declassify them.
- Compute $s = s_1 \cdots s_n$.
- Return $s \cdot [r_n^{-1}]$.
 $$s \cdot r_n^{-1} = (1 \cdot x_1 r_1) \cdot (r_1^{-1} x_2 r_2) \cdots (r_{n-1}^{-1} x_n r_n) \cdot r_n^{-1} = x_1 x_2 \cdots x_n$$
Matrix multiplication for ZK

- Let the entries of matrices A, B, C be available in the circuit
- Want to check that $A \cdot B = C$
- Repeat k times for soundness error $\leq 2^{-k}$:
 - Verifier generates a random vector \vec{v} of appropriate length
 - Its elements are added to the inputs of the circuit
 - Check that $A \cdot (B \cdot \vec{v}) = C \cdot \vec{v}$