Zero-knowledge proofs

Slides for the Cryptographic Protocols course

Nov-Dec 2021
Zero-knowledge proofs

- There is relation $R \subseteq \{0, 1\}^* \times \{0, 1\}^*$, $R \in \mathbf{P}$
- Two parties: prover P and verifier V
- P knows $x, w \in \{0, 1\}^*$. V knows x
- P wants to convince V that he knows w, such that $(x, w) \in R$

Functionality \mathcal{F}_Z^R

- Receive $(\text{prove}, \text{sessionId}, x, w)$ from P. Ignore, if $(x, w) \notin R$
- Send $(\text{proofReceived}, \text{sessionId}, |x|)$ to A
- Receive $(\text{sendProof}, \text{sessionId})$ from A
- Send $(\text{proven}, \text{sessionId}, x)$ to V

https://zkp.science
Stating differently: the properties we want

- Interactive proofs:
 - Completeness: if \((x, w) \in R\) and \(P\) follows the protocol, then honest \(V\) is convinced
 - Soundness: if a (malicious) \(P\) “does not know” \(w\), then \(V\) is not convinced
 - Easy to understand, if “does not know \(w\)” means \(\neg \exists w : (x, w) \in R\)

- Zero-knowledge: given \(x\), the traces of the protocol can be generated without access to \(w\)
 - I.e. there exists a generation algorithm for simulated traces
 - Simulated traces and real traces are undistinguishable for \(V\)
 - We may consider malicious \(V\), or (semi-)honest \(V\)
Σ-protocols
Σ-protocols

\[(x, w) \xrightarrow{P} x \quad V\]

\[(\alpha, state) \xleftarrow{\$} A(x, w) \quad \beta \xrightarrow{\$} \langle \text{some set} \rangle\]

\[\gamma \leftarrow R(x, w, state, \beta) \quad \xrightarrow{\gamma} V(x, \alpha, \beta, \gamma) \rightarrow 0/1\]
Σ-protocols

- P has x, w. V has x
- P sends α. At the same time, V sends the challenge β. P sends response γ. V accepts or rejects.
- **Completeness**: if $(x, w) \in R$, then V accepts
- **Special soundness**: if (α, β, γ) and $(\alpha, \beta', \gamma')$ are both accepting transcripts, then w can be found from them
 - A possible definition for “P knows w”
- **Simulatability**: Given (x, β), can generate (α, γ) so, that (α, β, γ) is indistinguishable from conversations between honest P and V on x

Σ-protocols are interactive proofs with honest-verifier zero-knowledge (HVZK)
Fiat-Shamir heuristic

- Turns Σ-protocols to non-interactive ZK proofs
 - P has (x, w), V has x
 - P computes some proof string π and makes it public
 - V looks at x and π, becomes convinced that $\exists w$, learns nothing about w

- Compute the verifier’s challenge with the random oracle, applied to the first message of the protocol.
 - It is important that the verifier’s step is just “generate a random value, send it to the prover”
 - I.e. it is a **public coin protocol**

- Can be generalized to multi-round public coin protocols
The protocol for proving knowledge of a discrete logarithm

Let \(G \) be a group with hard DLP. Let \(|G| = p \in \mathbb{P} \).

Consider the following \(R \subseteq (G \times G) \times \mathbb{Z}_p \):

\[
R = \{ ((g, h), x) \mid g^x = h \}
\]

Protocol

- \(P \) picks \(r \leftarrow \mathbb{Z}_p \). Sets \(\alpha \leftarrow g^r \)
- \(V \) picks \(\beta \leftarrow \mathbb{Z}_p \)
- \(P \) sets \(\gamma \leftarrow r + \beta x \)
- \(V \) checks if \(g^\gamma = \alpha h^\beta \)
Check the properties

- **Completeness.** \(g^\gamma = g^{r+\beta x} = g^r \cdot (g^x)^\beta = \alpha \cdot h^\beta \)

- **Special soundness.** We have \((\alpha, \beta_1, \gamma_1)\) and \((\alpha, \beta_2, \gamma_2)\), satisfying

 \[
 g^{\gamma_1} = \alpha h^{\beta_1} \quad \text{and} \quad g^{\gamma_2} = \alpha h^{\beta_2} \\
 \gamma_1 = \log_g \alpha + x\beta_1 \quad \text{and} \quad \gamma_2 = \log_g \alpha + x\beta_2 \\
 \gamma_1 - x\beta_1 = \gamma_2 - x\beta_2 \\
 x = (\gamma_1 - \gamma_2)/(\beta_1 - \beta_2)
 \]

- **Zero-knowledge.** Given \(g, h, \beta\), generate \(\gamma \leftarrow \mathbb{Z}_p\) and set \(\alpha \leftarrow g^\gamma / h^\beta\)

 - Has the same distribution as a real transcript, because \(\alpha\) is a uniformly random element of \(G\)
Generalize...

\[R = \{(g_1, \ldots, g_n, h_1, \ldots, h_n, x) \mid \forall i : g_i^x = h_i\} \subseteq G^{2n} \times \mathbb{Z}_p \]

Protocol

- **P** picks \(r \overset{\$}{\leftarrow} \mathbb{Z}_p \). Sets \(\alpha = (\alpha_1, \ldots, \alpha_n) \), where \(\alpha_i \leftarrow g_i^r \)
- **V** picks \(\beta \overset{\$}{\leftarrow} \mathbb{Z}_p \)
- **P** sets \(\gamma \leftarrow r + \beta x \)
- **V** checks if \(g_i^\gamma = \alpha_i h_i^\beta \) for all \(i \)
Generalize more...

- Let $V \leq \mathbb{Z}^n_p$ (as vector spaces)
- Let $\dim V = k$ and $\phi : \mathbb{Z}^k_p \rightarrow \mathbb{Z}^n_p$ be a vector space isomorphism between \mathbb{Z}^k_p and V
- Consider the following $R \subseteq \mathbb{G}^{2n} \times \mathbb{Z}^n_p$:

 $\begin{align*}
 R = \{ & ((g_1, \ldots, g_n, h_1, \ldots, h_n), (x_1, \ldots, x_n)) | (x_1, \ldots, x_n) \in V \land \forall i : g_i x_i = h_i \}
 \end{align*}$

Protocol

- P picks $\vec{r} \xleftarrow{\$} \mathbb{Z}^k_p$. Sets $\alpha = (\alpha_1, \ldots, \alpha_n)$, where $\alpha_i \leftarrow g_i^{s_i}$ and $\vec{s} = \phi(\vec{r})$
- V picks $\beta \xleftarrow{\$} \mathbb{Z}_p$
- P sets $\gamma = (\gamma_1, \ldots, \gamma_n)$, where $\gamma_i \leftarrow s_i + \beta x_i$
- V checks if $g_i^{\gamma_i} = \alpha_i h_i^\beta$ for all i, and if $\vec{\gamma} \in V$
Generalize even more...

- Let $V \leq \mathbb{Z}_p^{m \times n}$ (as vector spaces). Let k and ϕ be as before.

$$R = \{((g_1, \ldots, g_n, h_1, \ldots, h_m), X) \mid X \in V \land \forall i : h_i = \prod_{j=1}^{n} g_j^{X_{ij}}\}$$

Protocol

- P picks $\vec{r} \xleftarrow{\$} \mathbb{Z}_p^k$. Sets $S = \phi(\vec{r})$. Sets $\alpha = (\alpha_1, \ldots, \alpha_m)$, where $\alpha_i \leftarrow \prod_{j=1}^{n} g_j^{S_{ij}}$
- V picks $\beta \xleftarrow{\$} \mathbb{Z}_p$
- P sets $\gamma = (\gamma_{1,1}, \ldots, \gamma_{m,n})$, where $\gamma_{i,j} \leftarrow S_{ij} + \beta X_{ij}$
- V checks if $\prod_{j=1}^{n} g_j^{\gamma_{i,j}} = \alpha_i h_i^\beta$ for all i, and if $\gamma \in V$
Pedersen’s commitments
Commitments

- Cryptographic analogue to “a thing in locked box”

Methods

- **Commit.** \((c, d) \xleftarrow{\$} \text{Com}(m)\). \([m\text{ is a message to be temporarily hidden}]
 - \(m\) cannot be found from \(c\)
- **Open** (or **decommit**). \(0/1 \leftarrow \text{Open}(m, c, d)\)
 - Difficult to find \(c, m_1, d_1, m_2, d_2\), such that \(m_1 \neq m_2\), but
 \(\text{Open}(m_1, c, d_1) = \text{Open}(m_2, c, d_2) = 1\)

- Com creates the box \(c\) with the thing \(m\) inside. \(d\) is the key that opens it
- We think of the parties called “committer” and “verifier”
Pedersen’s commitments

- Let g generate \mathbb{G}
- Let $h \in \mathbb{G}$ be another element, such that nobody knows $\log_g h$.
- To commit $m \in \mathbb{Z}_p$, the committer randomly generates $r \in \mathbb{Z}_p$ and sends $g^m h^r$ to the verifier.
- To open the commitment, send (m, r) to the verifier.
- The commitment is unconditionally hiding, because $g^m h^r$ is a random element of \mathbb{G}.
- The commitment is computationally binding, because the ability to open a commitment in two different ways allows to compute $\log_g h$.
- Commitments are additively homomorphic:

$$ g^{m_1} h^{r_1} \cdot g^{m_2} h^{r_2} = g^{m_1+m_2} h^{r_1+r_2} $$
Proving the knowledge of opening

- There is a commitment c. P wants to prove that he knows how to open it
 - P knows committed value m and blinding exponent r

Protocol

- P picks random m', r', computes $c' = g^{m'} h^{r'}$, sends it to V
- V picks $\beta \leftarrow \mathbb{Z}_p$, sends it to P
- Both compute $c'' \leftarrow c' \beta \cdot c'$
- P opens c'' to V

... same, as showing the knowledge of a discrete logarithm
Proving the knowledge of many openings

- There are commitments c_1, \ldots, c_k. P wants to prove that he knows how to open them all.
- V picks random values $\zeta_1, \ldots, \zeta_k \leftarrow \mathbb{Z}_p$
 - Or: sends a random seed. ζ_1, \ldots, ζ_k are generated from that seed.
- Both compute $c' = \prod_{i=1}^{k} c_i^{\zeta_i}$
- P proves that he knows how to open c'
- No longer a Σ-protocol (because it has four moves, or five if you count sending of c_1, \ldots, c_k)
- Special soundness still holds
Multi-round arguments

- We have a protocol, where P and V exchange many messages.
- Similarly to Σ-protocols:
 - P sends the first and the last message.
 - Each time, V reacts by generating a random value and sending it to P.
- ZK — given the instance and V’s challenges in all rounds, generate a transcript.
- Soundness: by rewinding many times at different places, extract the witness.
 - Total number of rewinding must be “small”.
 - The “fork” must have only a polynomial number of prongs.
- Fiat-Shamir heuristic is applicable.
Special soundness of knowledge of many openings

- At point, where V sends $(\zeta_1, \ldots, \zeta_k)$, rewind $(k - 1)$ times
 - So we have $(\zeta_{11}, \ldots, \zeta_{1k}), \ldots, (\zeta_{k1}, \ldots, \zeta_{kk})$
- At each of k branches, where V sends β, rewind once
 - So we have $\beta_{11}, \beta_{12}, \ldots, \beta_{k1}, \beta_{k2}$
- Using β_i1, β_i2, extract m'_i
 - It is equal to $\zeta_{i1}m_1 + \cdots + \zeta_{ik}m_k$
- With k linear equations for m_1, \ldots, m_k, find them
Commit-and-prove
Committed computations

- There is a function $f : \mathbb{Z}_p^n \rightarrow \mathbb{Z}_p$, given by its circuit
- P has created the commitments $c_1, \ldots, c_n, c_\bullet$, sent them to V
- P wants to show that he knows $x_1, r_1, \ldots, x_n, r_n, y, r_\bullet$, such that
 - $c_i = g^{x_i} h^{r_i}$
 - $c_\bullet = g^y h^{r_\bullet}$
 - $y = f(x_1, \ldots, x_n)$

The Σ-protocol

- P commits to the outputs of all intermediate gates
- P proves that he knows what has been committed
- In parallel for each gate: P proves that the committed inputs and output of the gate are in the correct relationship
Proofs for gates computing linear combinations

Task
- P and V know c_1, \ldots, c_n. For each i, P knows x_i, r_i, s.t. $c_i = g^{x_i} h^{r_i}$
- There are $s_1, \ldots, s_n \in \mathbb{Z}_p$. Both P and V know them
- P wants to prove to V that $\sum_i s_i x_i = 0$

Reduce to “discrete logarithm”
- Let $u = \prod_i c_i^{s_i}$
- P proves to V that he knows $\log_h u$
 - ...which is equal to $\sum_i s_i r_i$
Proof for multiplication gate

Task
- Let P and V know c_1, c_2, c_3. Let P know x_i, r_i, such that $c_i = g^{x_i} h^{r_i}$
- P wants to prove to V that $x_1 x_2 = x_3$

Reduce to “subspace discrete logarithm”

$g_1 = g$
$g_2 = h$
$g_3 = c_1$
$h_1 = c_2$
$h_2 = c_1^{x_2} \cdot h^s$
$h_3 = h_2 / c_3$

- P picks $s \leftarrow \mathbb{Z}_p$, sends h_2 to V, both compute h_3
- P shows knowledge of $s_1, s_2, s_3, s_4 \in \mathbb{Z}_p$, such that
 $$h_1 = g_1^{s_1} g_2^{s_2} \quad h_2 = g_3^{s_1} g_2^{s_3} \quad h_3 = g_2^{s_4}$$
Proof for multiplication gate

Task
- Let P and V know c_1, c_2, c_3. Let P know x_i, r_i, such that $c_i = g^{x_i} h^{r_i}$
- P wants to prove to V that $x_1 x_2 = x_3$

Reduce to “subspace discrete logarithm”

<table>
<thead>
<tr>
<th>Coefficients generated by</th>
<th>$g_1 h_1$</th>
<th>$g_1 h_2$</th>
<th>$g_1 h_3$</th>
<th>$g_2 h_1$</th>
<th>$g_2 h_2$</th>
<th>$g_2 h_3$</th>
<th>$g_3 h_1$</th>
<th>$g_3 h_2$</th>
<th>$g_3 h_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_1 = g$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$g_2 = h$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$g_3 = c_1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$h_1 = c_2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$h_2 = c_1^{x_2} \cdot h^s$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$h_3 = h_2/c_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Nov-Dec 2021 23
Combining Σ-protocols
Proving a disjunction (1/3)

- Suppose there are two relations R_0, R_1 and Σ-protocols (A_i, R_i, V_i) for them
 - In both protocols, let challenge β come from some field \mathbb{F}
 - Let the protocols be secure, i.e. there are extractors Extr_i and simulators Sim_i
- Let P and V have instances x_0, x_1
- Let P have a single witness $w_h, h \in \{0, 1\}$, s.t. $(x_h, w_h) \in R_h$
- P wants to prove to V that he knows w_h
- P does not want to reveal the value of h
Proving a disjunction (2/3)

- P randomly generates $\beta_{1-h} \leftarrow F$
- P computes $(\alpha_{1-h}, \gamma_{1-h})$ by running $\text{Sim}_{1-h}(x_{1-h}, \beta_{1-h})$
- P computes α_h by running $\text{A}_h(x_h, w_h)$
- $P \rightarrow V : \alpha_0, \alpha_1$
- $V \rightarrow P : \beta$
- P computes $\beta_h = \beta - \beta_{1-h}$
- P computes γ_h by running $\text{R}_h(x_h, w_h, \alpha_h, \beta_h)$
- $P \rightarrow V : \beta_0, \beta_1, \gamma_0, \gamma_1$
- V checks both claims, using $V_i(x_i, \alpha_i, \beta_i, \gamma_i)$. Also checks $\beta_0 + \beta_1 = \beta$

Completeness

Yes
Proving a disjunction (3/3)

Zero-knowledge
- Simulator gets x_0, x_1, β
- Picks β_0, β_1, such that $\beta_0 + \beta_1 = \beta$. Runs $\text{Sim}_0(x_0, \beta_0)$ and $\text{Sim}_1(x_1, \beta_1)$

Special soundness
- Forking transcript:
 \[
 \alpha_0, \alpha_1, \beta, \beta_0, \beta_1, \gamma_0, \gamma_1, \beta', \beta'_0, \beta'_1, \gamma'_0, \gamma'_1
 \]
- $\exists i \in \{0, 1\}$, such that $\beta_i = \beta'_i$ and $\gamma_i = \gamma'_i$
- $h = 1 - i$
- Use $\text{Extr}_i(x_h, \alpha_h, \beta_h, \gamma_h, \beta'_h, \gamma'_h)$ to find w_h
Thresholds

- P and V have x_1, \ldots, x_n. Prover has $\{w_i\}_{i \in I}$, where $I \subseteq \{1, \ldots, n\}$, $|I| = k$, I is private
- P wants to show that he has witnesses for at least k of x_1, \ldots, x_n
- P randomly chooses $\beta_j \in \mathbb{F}$ for all $j \notin I$, simulates α_j, γ_j.
- P picks α_j for $j \in I$ as needed. Sends $\alpha = (\alpha_1, \ldots, \alpha_n)$ to V
- V responds with $\beta \in \mathbb{F}$.
- P picks polynomial f so that $f(0) = \beta$, $f(j) = \beta_j$ for all $j \notin I$ and $\deg f \leq n - k$
- P defines $\beta_i = f(i)$ and computes the response γ_i for all $i \in I$
- P sends $\gamma = (f, \gamma_1, \ldots, \gamma_n)$ to V
- V checks $\deg f$ and $f(0)$, recomputes β_i, checks γ_i for all i

Exercise. The three properties?
Exercise. A circuit of threshold gates?
Batch single-choice cut-and-choose OT
Let us try this again...

- The circuit has ℓ inputs. There are s copies of the circuit.
- Evaluator has bits b_1, \ldots, b_ℓ and a set $I \subset \{1, \ldots, s\}$ of size $s/2$
- Evaluator learns keys $k_{b_i}^{(i,j)}$ for all inputs i and circuits j
- Evaluator learns all keys for all circuits indexed in I

Oblivious transfer for single m_0, m_1 and b

- Evaluator sends $g_1, g_2, g_3, g_4, g_5, g_6$ to Garbler
- Evaluator proves that (g_1, g_2, g_3, g_4) is not a DH tuple
- Garbler “encrypts” m_0 with (g_1, g_2, g_5, g_6) and m_1 with (g_3, g_4, g_5, g_6)
- Evaluator decrypts the message encrypted with a DH tuple
Construction

- Evaluator sends \(\{g_{1,(i,j)}, g_{2,(i,j)}, g_{3,(i,j)}, g_{4,(i,j)}, g_{5,(i,j)}, g_{6,(i,j)}\}_{i,j=1,1}^{\ell,s} \) to Garbler
 - Actually: sends \(\{g_{1,(j)}, g_{2,(j)}, g_{3,(j)}, g_{4,(j)}, g_{5,(i,j)}, g_{6,(i,j)}\}_{i,j=1,1}^{\ell,s} \)
 - I.e. The first four \(g \)-s are the same for all inputs in the circuit

- Evaluator proves that for all \(i \in \{1, \ldots, \ell\} \):
 \[
 \bigwedge_{j=1}^{s} \text{DH}(g_{1,(j)}, g_{2,(j)}, g_{5,(i,j)}, g_{6,(i,j)}) \lor \bigwedge_{j=1}^{s} \text{DH}(g_{3,(j)}, g_{4,(j)}, g_{5,(i,j)}, g_{6,(i,j)})
 \]

- Evaluator proves that
 for at least \(s/2 \) different values of \(j \):
 \(\neg \text{DH}(g_{1,(j)}, g_{2,(j)}, g_{3,(j)}, g_{4,(j)}) \)
Universally composable zero-knowledge proofs
A commitment scheme has two methods — “commit” and “open”.

A third one as well — “initialize”. Returns public parameters.

In a trapdoor commitment scheme, initialization also returns a secret key.

...but no party receives it.

sk allows to create fake commitments.

Indistinguishable from real commitments (if do not know sk).

Can be opened as any value.

Pedersen’s commitments have the trapdoor $\log_g h$.
Ω-protocols

Like Σ-protocols, but...

- There is a **common reference string** (CRS) σ
 - Additional input to all steps of the protocol
- A simulator can generate σ together with a **trapdoor** τ
- If there exist two accepting conversations \((α, β, γ)\) and \((α, β', γ')\) for some \(x\), then can find \(w\) from τ, and a **single conversation** \((α, β, γ)\)

From Σ-protocol to Ω-protocol

- σ is the public key for an asymmetric encryption scheme
- \(P\) sends \(e \leftarrow E_σ(w)\) to \(V\) (as part of \(α\))
- \(P\) proves that exists \(w\), such that \(e\) encrypts \(w\) and \((x, w) \in R\)
UC ZK

- Need an Ω-protocol and a trapdoor commitment scheme
- There are $x, w, (\sigma_\Omega, \sigma_{TC})$ (latter output by \mathcal{F}_{CRS})
- P constructs α. Let $(com, dec) \leftarrow commit(\alpha)$
- P sends com to V
- V generates and sends β to P
- P constructs γ. Sends α, γ, dec to V
- V verifies the commitment and the transcript (α, β, γ)

Exercise: do the simulators

- For corrupt prover, must use τ_Ω
- For corrupt verifier, must use τ_{TC}
ZK from MPC techniques
Garbled circuits

- V becomes the garbler for the circuit for R
 - Outputs “0” and “1” have secret encodings
- V and P run OT protocols for P to learn the keys corresponding to the bits of w
- V sends the keys corresponding to the bits of x to P
- P evaluates the circuit and obtains the result r; commits to it
- V sends all keys to P; P checks that the circuit was correctly garbled
 - ZK is a variant of 2PC, where V has no secrets
- P opens the commitment of r to V
“MPC in the head”

- Consider the computation \(g(x; w_1, \ldots, w_n) = R(x, w_1 + \cdots + w_n) \)
- Let \(\Pi \) be an MPC protocol for \(g \) that tolerates semi-honest coalitions of size 2
- \(P \), with \(x, w \), selects \(w_1, \ldots w_n \) that add up to \(w \), and plays \(\Pi \)
- \(P \) commits to the views of all parties and sends them to \(V \)
- \(V \) asks \(P \) to open the views of two parties
- \(V \) accepts if these parties received “1” and their views are consistent with each other
“MPC in the head”

- Consider the computation $g(x; w_1, \ldots, w_n) = R(x, w_1 + \cdots + w_n)$
- Let Π be an MPC protocol for g that tolerates semi-honest coalitions of size 2
- P, with x, w, selects $w_1, \ldots w_n$ that add up to w, and plays Π
- P commits to the views of all parties and sends them to V
- V asks P to open the views of two parties
- V accepts if these parties received “1” and their views are consistent with each other
- If Π tolerates malicious coalitions of size $t = \Theta(n)$, then
 - V gets the views of t parties
 - The soundness error of the protocol is negligible
“Normally”, MPC protocols consist of two kinds of operations:

- Computations by a single party
- The two-party operation \((x, \perp) \mapsto (\perp, x)\)
 - i.e. send a message

After opening, \(V\) checks that the two parties have done both kinds of operations correctly.

MPC-in-the-head can handle any two-party operation \((x, y) \mapsto (f(x, y), g(x, y))\) equally well.

- E.g. \(((x, r), y) \mapsto (\perp, xy - r)\)
 - Called oblivious linear evaluation
- Privacy properties are still important to establish
 - In example above, 2nd party only learns \(xy - r\). Does not learn \(x\)
A 3-party MPC-in-the-head protocol

- There’s a ring R. Private values are additively shared
- Addition: every party by himself
- Multiplication of $[u] = ([u]_1, [u]_2, [u]_3)$ and $[v] = ([v]_1, [v]_2, [v]_3)$:
 - $[u]_i \cdot [v]_i$ is computed by the i-th party
 - A secret-sharing of $[u]_i \cdot [v]_j$ is computed as follows:
 - P_i generates a random $r \in R$
 - P_i and P_j perform $(([u]_i, r), [v]_j) \mapsto (\bot, [u]_i \cdot [v]_j - r)$
 - P_j uses obtained value as his share. P_i uses r
- Each party adds up the shares of the products of components
- The joint view of any two parties is random
 - Whenever one of the interacts with the 3rd party, it either gets nothing, or something masked with fresh randomness
Sum-Check
Verifiable computation

- A computation C, given e.g. as an arithm. circuit over a field \mathbb{F}
- Parties: prover P and verifier V
- Both know the input \vec{x} to C, and the corresponding output y
- Prover wants to convince the verifier that indeed $C(\vec{x}) = y$
- Optimize
 - Verifier’s computation and “access to resources”
 - Prover’s computation (beyond computing C)
 - Communication
- **Completeness.** Protocol convinces the verifier
- **Soundness.** If $C(\vec{x}) \neq y$, then verifier cannot be convinced
 - Except for a small soundness error
Facts about polynomials over \mathbb{F}

Univariate
- A non-zero polynomial of degree at most d has at most d roots
 - Two polynomials of degree at most d that agree on at least $(d + 1)$ points, are equal
 - To test whether $f \equiv 0$, evaluate $f(r)$ on a random $r \in \mathbb{F}$
 - Error: at most $(\deg f)/|\mathbb{F}|$
- If $f(c) = 0$, then $(X - c)$ divides $f(X)$

Multivariate
- We can speak about total degree and individual degree in a particular variable
- **Schwartz-Zippel lemma**: (see Wikipedia for proof)
 - Let f be non-zero n-variate polynomial of total degree $\leq d$
 - Let $S \subseteq \mathbb{F}$
 - Pick v_1, \ldots, v_n uniformly randomly from S
 - Then $\Pr[f(v_1, \ldots, v_n) = 0] \leq d/|S|$
Sum-Check

- Let $f \in \mathbb{F}[X_1, \ldots, X_n]$, with $\deg_{X_i} f \leq d_i$ (for each i)
- Let $B \subseteq \mathbb{F}$ be a “small” set (e.g. $\{0, 1\}$). Let $z \in \mathbb{F}$
- **Sum-Check**: a verifiable computation protocol for

$$z \overset{?}{=} \sum_{v_1 \in B} \sum_{v_2 \in B} \cdots \sum_{v_n \in B} f(v_1, v_2, \ldots, v_n)$$
Sum-Check protocol

- \(P \) sends \(f_1(X) = \sum_{v_2 \in B} \cdots \sum_{v_n \in B} f(X, v_2, \ldots, v_n) \) to \(V \)
 - I.e. sends the coefficients of the polynomial \(f_1 \)
- \(V \) checks that \(z = \sum_{v \in B} f_1(v) \)
- \(V \) randomly picks \(r_1 \in \mathbb{F} \), sends it to \(P \)
- \(P \) and \(V \) use Sum-Check to verify that
 \[
 f_1(r_1) = \sum_{v_2 \in B} \cdots \sum_{v_n \in B} f(r_1, v_2, \ldots, v_n) .
 \]
Sum-Check protocol

- P sends $f_1(X) = \sum_{v_2 \in B} \cdots \sum_{v_n \in B} f(X, v_2, \ldots, v_n)$ to V
- I.e. sends the coefficients of the polynomial f_1
- V checks that $z = \sum_{v \in B} f_1(v)$
- V randomly picks $r_1 \in \mathbb{F}$, sends it to P
- P and V use Sum-Check to verify that

$$f_1(r_1) = \sum_{v_2 \in B} \cdots \sum_{v_n \in B} f(r_1, v_2, \ldots, v_n).$$

Base of the recursion (V evaluates f only here)

- P sends $f_n(X) = f(r_1, \ldots, r_{n-1}, X)$ to V
- V checks that $f_{n-1}(r_{n-1}) = \sum_{v \in B} f_n(v)$
- V randomly picks $r_n \in \mathbb{F}$, checks that $f_n(r_n) = f(r_1, \ldots, r_n)$
Description without recursion

- At the beginning: define $z_0 := z$
- Do n rounds. In the i-th round:
 - $P \rightarrow V : f_i(X) = \sum_{v_{i+1} \in B} \cdots \sum_{v_n \in B} f(r_1, \ldots, r_{i-1}, X, v_{i+1}, \ldots, v_n)$
 - V checks that $z_{i-1} = \sum_{v \in B} f_i(v)$
 - $V \rightarrow P : r_i \leftarrow F$
 - Define $z_i := f_i(r_i)$
- V checks that $z_n = f(r_1, \ldots, r_n)$
 - ...the only place where V evaluates f
Example

\[4 \equiv \sum_{v_1 \in \{0, 1\}} \cdots \sum_{v_5 \in \{0, 1\}} v_1 v_2 + 3v_3 + v_1 v_4 - v_2 v_5 + 2v_1 v_2 v_3 v_5 - 4v_4 v_5 + 12 \pmod{17}\]

<table>
<thead>
<tr>
<th>i</th>
<th>f_i</th>
<th>?</th>
<th>r_i</th>
<th>z_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>$9 + 3X$</td>
<td>✓</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>$\ldots + X$</td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>$\ldots + X$</td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>$\ldots + X$</td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>$\ldots + X$</td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Check that $z_5 = f(r_1, r_2, r_3, r_4, r_5)$

Nov-Dec 2021
Soundness of Sum-Check

Theorem. The soundness error of Sum-Check is \(\leq \frac{d_1 + \cdots + d_n}{|F|} \)

Induction base

Check of \(f_n(X) \overset{?}{=} f(r_1, \ldots, r_{n-1}, X) \) errs with prob. \(\leq \frac{d_n}{|F|} \)

Induction step

- Suppose \(f_1 \) sent by \(P \) is wrong. Let \(\bar{f}_1 \) be correct
 - \(f_1(r_1) = \bar{f}_1(r_1) \) with prob. \(\leq \frac{d_1}{|F|} \)
 - First source of soundness error
- If \(f_1(r_1) \neq \bar{f}_1(r_1) \), then recursive Sum-Check passes with probability \(\leq \frac{d_2 + \cdots + d_n}{|F|} \)
 - Second source of soundness error
GKR protocol
Goldwasser-Kalai-Rothblum protocol

- Computation C given by an arithmetic circuit over field \mathbb{F}. Depth d
 - Addition and multiplication nodes of fan-in 2
 - Circuit is layered, wires go from one layer to the next
 - Outputs at layer 0. Inputs at layer d
 - Verifier “understands” circuit without reading it all
 - There’s a uniform description of gates and wires
 - Let number of gates at layer i be between $2^{k_i-1} + 1$ and 2^{k_i}

- For each $i \in \{1, \ldots, d\}$, wiring is described by
 - $add_i, mult_i : \{0, 1\}^{k_i-1} \times (\{0, 1\}^{k_i})^2 \rightarrow \{0, 1\}$
 - $add_i(\vec{a}, \vec{b}, \vec{c}) = 1$ means that \vec{a}-th gate on $(i - 1)$-st layer
 - ...is an addition gate
 - ...gets its inputs from \vec{b}-th and \vec{c}-th gates on i-th layer
 - (similar for $mult_i$)

- V has descriptions of all $add_i, mult_i$
Example circuit and functions $\text{add}_i, \text{mult}_i$

Layer 0

Layer 1

Layer 2

Layer 3

\begin{align*}
\text{add}_1 &= \{(1, 10, 11)\} \\
\text{mult}_1 &= \{(0, 00, 01)\} \\
\text{add}_2 &= \{(10, 01, 11), (11, 00, 11)\} \\
\text{mult}_2 &= \{(00, 00, 10), (01, 01, 11)\} \\
\text{add}_3 &= \{(00, 00, 10), (11, 01, 10)\} \\
\text{mult}_3 &= \{(01, 00, 01), (10, 00, 10)\}
\end{align*}
Assignment of values to gates

- For $i \in \{0, \ldots, d\}$, let $W_i : \{0, 1\}^{k_i} \rightarrow \mathbb{F}$ give the values at the gates in i-th layer.
- V has W_0 and W_d.
- Each layer is computed from the next: $\forall i \in \{1, \ldots, d\}$:

$$W_{i-1}(\vec{a}) = \sum_{\vec{b}, \vec{c} \in \{0, 1\}^{k_i}} \left(\text{add}_i(\vec{a}, \vec{b}, \vec{c}) \cdot (W_i(\vec{b}) + W_i(\vec{c})) + \text{mult}_i(\vec{a}, \vec{b}, \vec{c}) \cdot (W_i(\vec{b}) \cdot W_i(\vec{c})) \right)$$
Multilinear extensions

Theorem

Let $f : \{0, 1\}^k \to \mathbb{F}$. There is a unique multilinear $\tilde{f} : \mathbb{F}^k \to \mathbb{F}$ that extends f.

Existence

- If $k = 0$ then f is constant function. Take $\tilde{f} = f$.
- $\tilde{f} = f_{X_1=0} + X_1 \cdot f_{X_1=1}$. Multilinear by induction.
Multilinear extensions

Uniqueness

○ let $h : \mathbb{F}^k \to \mathbb{F}$ be multilinear, let it be non-zero
○ Let $M = cX_{i_1}X_{i_2} \cdots X_{i_n}$ be its monomial of minimal degree
○ Consider the point $\vec{x} \in \{0, 1\}^k$, $x_i = 1$ iff $i \in \{i_1, \ldots, i_n\}$
○ Then $h(\vec{x}) = c \neq 0$
 ○ All other monomials except M contain other variables beside X_{i_1}, \ldots, X_{i_n}, hence become 0 at \vec{x}
○ If $g_1, g_2 : \mathbb{F}^k \to \mathbb{F}$ are two multilinear extensions of f, then:
 ○ $(g_1 - g_2)$ is also multilinear
 ○ $(g_1 - g_2)$ is zero on all points in $\{0, 1\}^k$.
○ Hence $(g_1 - g_2)$ is zero everywhere in \mathbb{F}, i.e. $g_1 = g_2$, i.e. the multilinear extension is unique
Alternative proof of being zero everywhere

Induction (step) over number of variables

- \(h(r_1, \ldots, r_k) \) can be computed from \(h(r_1, \ldots, r_{k-1}, 0) \) and \(h(r_1, \ldots, r_{k-1}, 1) \)
 - Using interpolation. Because \(\deg_{X_k} h \leq 1 \)
- \(h(X_1, \ldots, X_{k-1}, b) \) (where \(b \in \{0, 1\} \)) is:
 - multilinear in \(k - 1 \) variables
 - zero on the hypercube

 hence zero everywhere, by the induction assumption

- Hence \(h(r_1, \ldots, r_k) = 0 \), by interpolation

higher-degree polynomials and larger sets

Let \(H \subseteq \mathbb{F} \). Any function \(H^k \rightarrow \mathbb{F} \) can be uniquely extended to a polynomial \(\mathbb{F}^k \rightarrow \mathbb{F} \), where each individual degree is \(< |H| \)
Evaluating multilinear extensions

Let $\vec{x} \in \mathbb{F}^k$

$$\tilde{f}(\vec{x}) = \sum_{\vec{w} \in \{0,1\}^k} f(\vec{w}) \cdot \chi_{\vec{w}}(\vec{x})$$

$$\chi_{\vec{w}}(\vec{x}) := \prod_{i=1}^{k} (w_i \cdot x_i : (1 - x_i))$$

- Given the values of f on the whole $\{0,1\}^k$, the value of any $\tilde{f}(\vec{x})$ can be computed in time $O(2^k)$
- If f is sparse, then $\tilde{f}(\vec{x})$ can be computed in time proportional to support of f
Assignment of values to gates

Theorem

\[\widehat{W}_{i-1}(\vec{X}) = \sum_{\vec{b}, \vec{c} \in \{0,1\}^{k_i}} \left(\widehat{\text{add}}_i(\vec{X}, \vec{b}, \vec{c}) \cdot (\widehat{W}_i(\vec{b}) + \widehat{W}_i(\vec{c})) + \right. \]

\[\left. \widehat{\text{mult}}_i(\vec{X}, \vec{b}, \vec{c}) \cdot (\widehat{W}_i(\vec{b}) \cdot \widehat{W}_i(\vec{c})) \right) \]

Proof.

- Polynomials at both sides of the \(=\)-sign are multilinear
- These polynomials agree at the set \(\{0, 1\}^{k_i-1}\)
GKR protocol

- Verifies equation on previous slide (for V’s W_0 and W_d)
- Suppose there is some i, a random $\vec{r}_{i-1} \in \mathbb{F}^{k_i-1}$, and $w_{i-1} \in \mathbb{F}$
 - Verifier believes $\tilde{W}_{i-1}(\vec{r}_{i-1}) = w_{i-1}$ (knows it for $i = 1$)
- Sum-Check this:

$$w_{i-1} = \sum_{\vec{b}, \vec{c} \in \{0,1\}^{k_i}} \left(\tilde{\text{add}}_i(\vec{r}_{i-1}, \vec{b}, \vec{c}) \cdot (\tilde{W}_i(\vec{b}) + \tilde{W}_i(\vec{c})) + \tilde{\text{mult}}_i(\vec{r}_{i-1}, \vec{b}, \vec{c}) \cdot (\tilde{W}_i(\vec{b}) \cdot \tilde{W}_i(\vec{c})) \right)$$

- At the end of sum-check, for some random $\vec{s}_i, \vec{t}_i \in \mathbb{F}^{k_i}$, V needs to compute

$$\tilde{\text{add}}_i(\vec{r}_{i-1}, \vec{s}_i, \vec{t}_i), \tilde{\text{mult}}_i(\vec{r}_{i-1}, \vec{s}_i, \vec{t}_i), \tilde{W}_i(\vec{s}_i), \tilde{W}_i(\vec{t}_i)$$

- First two are OK. But V does not know \tilde{W}_i (except when $i = d$)
GKR protocol

- Define $\ell_i : \mathbb{F} \rightarrow \mathbb{F}^{k_i}$ by $\ell_i(x) = \vec{s}_i + x \cdot (\vec{t}_i - \vec{s}_i)$.
- $q_i := \widetilde{W}_i \circ \ell_i$ is a polynomial $\mathbb{F} \rightarrow \mathbb{F}$, $\deg q_i \leq k_i$. P tells it to V.
- V completes the Sum-Check, taking $\widetilde{W}_i(\vec{s}_i) = q_i(0)$ and $\widetilde{W}_i(\vec{t}_i) = q_i(1)$.
- V picks a random $r_i^{\#} \in \mathbb{F}$, defines $\vec{r}_i = \ell_i(r_i^{\#})$ and $w_i = q_i(r_i^{\#})$. Goes to next round.
 - That’s like V checking whether $q_i = \widetilde{W}_i \circ \ell_i$, where \widetilde{W}_i is given by the Theorem above.
- At the end of d-th round:
 - P still defines q_d and sends to V.
 - V still takes $\widetilde{W}_d(\vec{s}_d) = q_d(0)$ and $\widetilde{W}_d(\vec{t}_d) = q_d(1)$.
 - V picks a random $r_d^{\#} \in \mathbb{F}$, checks if $q_i(r_d^{\#}) = \widetilde{W}_d(\ell_d(r_d^{\#}))$.
 - so V evaluates \widetilde{W}_d only once.
Soundness

Cheating probability at i-th round

- Sum-Check: $2k_i/|F|
- Comparison of q_i and $\tilde{W}_i \circ \ell_i$: $k_i/|F|
 - Also present for \tilde{W}_0
- k_i is $O(\log |C|)$

Total soundness error: $O(d \log |C|/|F|)$
Zero-knowledge GKR

- Do everything with Pedersen’s commitments, i.e.:
- There is an arithmetic circuit \(C : \mathbb{Z}_p^n \times \mathbb{Z}_p^m \rightarrow \mathbb{Z}_p \) expressing the relation
 - Instance length: \(n \). Witness length: \(m \)
 - Accept, if output is e.g. 0
- Both compute the commitments to instance and output
- Prover commits to witness
- Verifier does all its computations in the GKR product with the commitments it has
 - If multiplication or equality check is necessary, then Prover helps
Costs of the GKR protocol (for verifier)

- In round i, does Sum-Check for $2k_i$-variate polynomial with individual degrees ≤ 2
 - $2k_i$ rounds, 3 elements sent per round, V computes a linear combination of them, checks equality
- At the end of the round, V
 - Gets $(k_i + 1)$ elements, computes two linear combinations of them
 - Does a multiplication, (a constant-size linear combination,) and an equality check
- At the last round, V evaluates \widehat{W}_d on a random point
Costs of the GKR protocol (for verifier)

- In round i, does Sum-Check for $2k_i$-variate polynomial with individual degrees ≤ 2
 - $2k_i$ rounds, 3 elements sent per round, V computes a linear combination of them, checks equality
- At the end of the round, V
 - Gets $(k_i + 1)$ elements, computes two linear combinations of them
 - Does a multiplication, (a constant-size linear combination,) and an equality check
- At the last round, V evaluates \tilde{W}_d on a random point
- So, V has to do some work for each layer of the circuit:
 - For all but the input layer, the cost is logarithmic to the size of the layer
 - For the input layer, the cost is proportional to the size (of the witness)
- V only needs \tilde{W}_d evaluated on a single point. Could this be more efficient?
Evaluating $\tilde{\text{add}}_i$ and $\tilde{\text{mult}}_i$

- Verifier has to evaluate $\tilde{\text{add}}_i$ and $\tilde{\text{mult}}_i$ on random points
 - Generally, the costs for this are proportional to the number of gates in layer $(i - 1)$
- For faster evaluation, need regularity in the circuit. For example
 - Many identical circuits running in parallel (+ some pre- and postprocessing)
 - Computable by read-once ordered binary decision diagram
- For certain useful circuits, faster ways of evaluating $\tilde{\text{add}}_i$ and $\tilde{\text{mult}}_i$ are known, e.g.
 - Fast Fourier Transform
 - $\tilde{\text{add}}$ and $\tilde{\text{mult}}$ for certain universal circuits
Privacy from extra randomness
Polynomial commitments

- P has a polynomial f of degree $\leq d$
- P sends some value c to V
- Later, V sends an element $x \in \mathbb{F}$ to P
- P sends some $y \in \mathbb{F}$ and some opening information to V
 - Or perhaps they will run a longer protocol
- V becomes convinced that
 - P had in mind a polynomial f' of degree $\leq d$, when it prepared c
 - $f'(x) = y$
- Zero-knowledge may or may not be required
Polynomial commitments

- P has a polynomial f of degree $\leq d$
- P sends some value c to V
- Later, V sends an element $x \in \mathbb{F}$ to P
- P sends some $y \in \mathbb{F}$ and some opening information to V
 - Or perhaps they will run a longer protocol
- V becomes convinced that
 - P had in mind a polynomial f' of degree $\leq d$, when it prepared c
 - $f'(x) = y$
- Zero-knowledge may or may not be required
- The two convictions can be separate protocols; second one may be executed repeatedly
- This is a possibility for evaluating $\tilde{\text{add}}_i$, $\tilde{\text{mult}}_i$

Sum-Check with privacy (1/4)

- To compute

\[
S = \sum_{v_1 \in \{0,1\}} \cdots \sum_{v_n \in \{0,1\}} f(v_1, \ldots, v_n)
\]

we considered a *multilinear extension* of \(f\)

- We want to make private the values of \(f\) on the hypercube (except for \(S\))
 - Still, there’s some commitment to \(f\)

- In Sum-Check,
 1. \(P\) sent to \(V\) (linear) polynomials \(f_i(X) = \sum_{v_{i+1}} \cdots \sum_{v_n} \tilde{f}(r_1, \ldots, r_{i-1}, X, v_{i+1}, \ldots, v_n)\)
 2. \(V\) itself computed \(\tilde{f}(r_1, \ldots, r_n)\)

They both leak information about \(f\)
Sum-Check with privacy (2/4)

Fixing the 2nd leak

Do not commit to \(\tilde{f} \). Instead, \(P \) randomly picks \(r_1 \in \mathbb{F} \) and commits to

\[
\hat{f}(\vec{X}) := \tilde{f}(\vec{X}) + r_1 \cdot X_1(1 - X_1)
\]

- For all \(\vec{x} \in \{0, 1\}^n \): \(\hat{f}(\vec{x}) = f(\vec{x}) \)
- For all \(\vec{x} \in \mathbb{F}^n \), where \(x_1 \not\in \{0, 1\} \): \(\hat{f}(\vec{x}) \) is independent of the values of \(f \) on the hypercube

If some outer protocol (e.g. GKR) requires \(\hat{f} \) to be evaluated in more than 1 point, then add more random terms.
Sum-Check with privacy (3/4)

Fixing the 1st leak (1/2)

- P commits to a random polynomial p with the same individual degrees as \hat{f}
 - Commitment has to be ZK. It fixes the individual degrees of p
 - P can take $p(\vec{X}) = p_1(X_1) + \cdots + p_n(X_n)$, where p_i are random univariate polynomials of given individual degree
 - So P separately commits to p_1, \ldots, p_n

- P computes and sends to V

 $$T = \sum_{v_1 \in \{0,1\}} \cdots \sum_{v_n \in \{0,1\}} p(v_1, \ldots, v_n)$$
Sum-Check with privacy (4/4)

Fixing the 1st leak (2/2)

- V picks a random $\rho \in \mathbb{F}$ and sends it to P
- P and V run Sum-Check for $\rho \cdot \hat{f} + p$. The result must be $\rho S + T$
- In the end, when V wants to evaluate $(\rho \cdot \hat{f} + p)(r_1, \ldots, r_n)$,
 - it gets the value of $p(r_1, \ldots, r_n)$ from the opening of the commitment
 - it gets the value of $\hat{f}(r_1, \ldots, r_n)$ “normally”
Probabilistically checkable proofs (PCP)
Probabilistically checkable proofs (PCP)

- There's a relation $R \subseteq \{0, 1\}^* \times \{0, 1\}^*$ with $R \in \mathbb{P}$
- V knows x. P knows $(x, w) \in R$, wants to convince V
- P comes up with a proof string $\pi \in \Sigma^\ell$
 - Σ is some proof alphabet. Typically, Σ is \mathbb{F}
- V gets oracle access to π
 - $i \mapsto \pi[i]$
- V looks at x and makes oracle queries. Accepts or rejects
- Want: completeness and soundness
- Minimize: number of V's queries & length of π
PCPs in cryptographic setting

- P comes up with a proof string $\pi \in \Sigma^\ell$
- P builds a *Merkle tree* on top of π, sends the root to V
- Whenever V wants to get $\pi[i]$:
 - V sends i to P
 - P responds with $\pi[i]$ and the hash path
- Hence π never has to be communicated
- But P still has to materialize it
Low-degree tests

- Let V have oracle access to some $f : \mathbb{F}^m \rightarrow \mathbb{F}$
 - E.g. as a proof string of length $|\mathbb{F}|^m$
- How can V verify that f is a polynomial of degree $\leq d$?
Low-degree tests

- Let V have oracle access to some $f : \mathbb{F}^m \rightarrow \mathbb{F}$
 - E.g. as a proof string of length $|\mathbb{F}|^m$
- How can V verify that f is a polynomial of degree $\leq d$?

Line vs. point test

- Pick a line $\ell : \mathbb{F} \rightarrow \mathbb{F}^m$
- Check if $f \circ \ell$ is a polynomial of degree $\leq d$
 - Look at $|\mathbb{F}|$ points of the proof string
 - Or: let P give that polynomial. Verify equality at a single point
 - That’s where the name comes from
- Does this give good confidence that $\deg f \leq d$?
Low-degree tests

- Let V have oracle access to some $f : \mathbb{F}^m \to \mathbb{F}$
 - E.g. as a proof string of length $|\mathbb{F}|^m$
 - How can V verify that f is a polynomial of degree $\leq d$?

Line vs. point test

- Pick a line $\ell : \mathbb{F} \to \mathbb{F}^m$
- Check if $f \circ \ell$ is a polynomial of degree $\leq d$
 - Look at $|\mathbb{F}|$ points of the proof string
 - Or: let P give that polynomial. Verify equality at a single point
 - That’s where the name comes from

- Does this give good confidence that $\deg f \leq d$?
- No. f could differ from a low-degree polynomial in few places
- But f is close to a low-degree polynomial
“Differing in a few places”

○ Let \vec{a}, \vec{b} have equal length. Their relative Hamming distance is
\[\Delta(\vec{a}, \vec{b}) = \frac{|\{i | a_i \neq b_i\}|}{|\vec{a}|} \]

○ For a set B of vectors, define $\Delta(\vec{a}, B) = \min_{\vec{b} \in B} \Delta(\vec{a}, \vec{b})$

Guarantee from line-vs-point test

If $\Pr[\text{line-point test rejects}] \leq \delta$, then $\Delta(f, \mathbb{F}^{\leq d}[X_1, \ldots, X_m]) \leq \delta + m c_1 d c_2 / |\mathbb{F}| c_3$, for some constants c_1, c_2, and c_3

Guarantee from plane-vs-point test

If $\Pr[\text{plane-point test rejects}] \leq \delta$, then $\Delta(f, \mathbb{F}^{\leq d}[X_1, \ldots, X_m]) \leq \delta + m c_1 (d / |\mathbb{F}|) c_2$, for some constants c_1 and c_2
Combining low-degree tests

- Let V have access to polynomials $f_1, \ldots, f_k : \mathbb{F} \rightarrow \mathbb{F}$
- Let $d_1, \ldots, d_k \in \mathbb{N}$. V wants to verify that $\forall i : \deg f_i \leq d_i$
- Let $d = \max\{d_1, \ldots, d_k\}$
- V generates random $r_1, \ldots, r_k \in \mathbb{F}$. Defines the polynomial

$$f(X) := \sum_{i=1}^{k} r_i \cdot X^{d-d_i} f_i(X)$$

- The nature of access to f depends a lot on the nature of accesses to f_i
- One can always find $f(x)$ by finding all $f_i(x)$ and then combining
- Sometimes accesses to f_i may be more homomorphic
- Check that f has degree $\leq d$
Individual-degree testing

- V wants to verify that $f : \mathbb{F}^m \rightarrow \mathbb{F}$ has degree d in each variable

The test

- Test that f has total degree $\leq dm$
- For each coordinate $i \in \{1, \ldots, m\}$
 - Select random $r_1, \ldots, r_{i-1}, r_{i+1}, \ldots, r_m \in \mathbb{F}$
 - i.e. select a random line parallel to the i-th axis
 - Test that $\deg f(r_1, \ldots, r_{i-1}, X, r_{i+1}, \ldots, r_m) \leq d$
PCP for CIRCUIT-SAT
Polynomial remainder theorem for multivariate polynomials

Theorem

Let \(f : \mathbb{F}^m \rightarrow \mathbb{F} \) and \(\vec{r} = (r_1, \ldots, r_m) \in \mathbb{F}^m \). Then

\[
f(\vec{r}) = 0 \iff \exists (g_1, \ldots, g_m : \mathbb{F}^m \rightarrow \mathbb{F}) : f(\vec{X}) = \sum_{i=1}^{m} (X_i - r_i) \cdot g_i(\vec{X})
\]

(Direction "\(\iff \)" is trivial. Direction "\(\Rightarrow \)": first show for \(\vec{r} = \vec{0} \), and then shift the variables)

- To show that \(f(\vec{r}) = v \), show that \(f(\vec{X}) - v \) has a root at \(\vec{r} \):
 - \(P \) commits to \(g_1, \ldots, g_m \)
 - \(V \) checks their degrees, and the equality of polynomials
A different proof for previous Theorem

- Let $f_0 := f$
- Define $f_1, \ldots, f_m : \mathbb{F}^m \to \mathbb{F}$ as reminders in polynomial division:
 \[
 f_{i-1}(\vec{X}) = (X_i - r_i) \cdot g_i(\vec{X}) + f_i(\vec{X})
 \]
 (divisor \quad \text{quotient})
- f_i has degree 0 in X_1, \ldots, X_i
 - Hence f_m is a constant polynomial
- We have
 \[
 f(\vec{X}) = \left(\sum_{i=1}^{m} (X_i - r_i) \cdot g_i(\vec{X})\right) + f_m(\vec{X})
 \]
- Left-hand side and the sum vanish at $\vec{X} \leftarrow \vec{r}$. Hence $f_m(\vec{r}) = 0$. Hence $f_m \equiv 0$. \(\square\)
Generalization to ranges

Let $R \subseteq \mathbb{F}$. Define the vanishing polynomial $Z_R : \mathbb{F} \to \mathbb{F}$ by $Z_R(X) := \prod_{r \in R}(X - r)$.

Theorem

Let $f : \mathbb{F}^m \to \mathbb{F}$ and $R_1, \ldots, R_m \subset \mathbb{F}$. Then

$$\forall r_1 \in R_1, \ldots, r_m \in R_m : f(r_1, \ldots, r_m) = 0$$

$$\iff$$

$$\exists (g_1, \ldots, g_m : \mathbb{F}^m \to \mathbb{F}) : f(\vec{X}) = \sum_{i=1}^m Z_{R_i}(X_i) \cdot g_i(\vec{X})$$

- **Proof:** as in previous slide
- Instead of $(X_i - r_i)$, we have $Z_{R_i}(X_i)$
- $f_m \equiv 0$, because
 - it has individual degree $< |R_i|$ in variable X_i, and
 - it equals 0 on the whole $R_1 \times \cdots \times R_m$.

Nov-Dec 2021
PCP for boolean circuit satisfiability

- Boolean circuit. \(2^n\) gates (inputs+internals). One output
- Encode the circuit by the following \(C: \{0, 1\}^{3n+3} \rightarrow \{0, 1\}\):
 \(C(\vec{x}, \vec{y}, \vec{z}, b_x, b_y, b_z) = 1\) iff the following things hold
 - Gate no. \(\vec{z}\) gets its inputs from gates no. \(\vec{x}\) and \(\vec{y}\)
 - The output of gate no. \(\vec{z}\) on inputs \(\neg b_x\) and \(\neg b_y\) is \(b_z\)

 \((C\ is\ a\ public\ function, \ \tilde{C}: \mathbb{F}^{3n+3} \rightarrow \mathbb{F}\ is\ public\ polynomial)\)

- Prover holds private assignment \(A: \{0, 1\}^n \rightarrow \{0, 1\}\)
- Prover commits to \(\tilde{A}: \mathbb{F}^n \rightarrow \mathbb{F}\)
- Prover also commits to the polynomial \(D: \mathbb{F}^{3n+3} \rightarrow \mathbb{F}:\)

\[
D(\vec{x}, \vec{y}, \vec{z}, b_x, b_y, b_z) := \tilde{C}(\vec{x}, \vec{y}, \vec{z}, b_x, b_y, b_z) \cdot (\tilde{A}(\vec{x}) - b_x) \cdot (\tilde{A}(\vec{y}) - b_y) \cdot (\tilde{A}(\vec{z}) - b_z)
\]
The polynomial D

$C(\vec{x}, \vec{y}, \vec{z}, b_x, b_y, b_z) = 1$ iff the following things hold

- Gate no. \vec{z} gets its inputs from gates no. \vec{x} and \vec{y}
- The output of gate no. \vec{z} on inputs $\neg b_x$ and $\neg b_y$ is b_z

$$D(\vec{x}, \vec{y}, \vec{z}, b_x, b_y, b_z) := \tilde{C}(\vec{x}, \vec{y}, \vec{z}, b_x, b_y, b_z) \cdot (\tilde{A}(\vec{x}) - b_x) \cdot (\tilde{A}(\vec{y}) - b_y) \cdot (\tilde{A}(\vec{z}) - b_z)$$

Theorem

A is a valid assignment to the gates, iff D is zero on the entire hypercube $\{0, 1\}^{3n+3}$.

Proof: a simple case analysis
Zero-on-subcube test

- P has committed to $f : \mathbb{F}^m \rightarrow \mathbb{F}$ of degree $\leq d$
- $H \subseteq \mathbb{F}$. P wants to show that f is zero on H^m.
- In this case $f(\vec{X}) = \sum_{i=1}^{m} Z_H(X_i) \cdot g_i(\vec{X})$
- P computes g_1, \ldots, g_m and commits to them, too
- V checks that each g_i has degree $\leq d - |H|$
Proof string encodes $\widetilde{A}, D, g_1, \ldots, g_n$

Verifier picks a random line $\ell : \mathbb{F} \to \mathbb{F}^{3n+3}$. Checks that

- All committed polynomials, when restricted to ℓ have appropriately bounded degrees;
- Zero-on-subcube equation for $H = \{0, 1\}$ is satisfied on all points of ℓ;
- Definition of D is satisfied on all points of ℓ;
- \widetilde{A} assigns 1 to the output gate of the circuit

Note that we could use some other H as the alphabet for indexing the gates. That would reduce n
ZK-PCP for CIRCUIT-SAT
Zero-knowledge?

- A number μ of values will be opened during these tests
- Try to encode the private values so, that the opening of any μ of them will not yet reveal the actual values
- A bit similar to having MPC-in-the-head
Zero-knowledge?

- A number μ of values will be opened during these tests
- Try to encode the private values so, that the opening of any μ of them will not yet reveal the actual values
- A bit similar to having MPC-in-the-head
- E.g. change the circuit. Instead of a each wire, have a bundle of them
 - The values on each bundle XOR together to the original value

Simulating Verifier’s view

- First, pick the line ℓ
- Come up with the values of $\tilde{A}, D, g_1, \ldots, g_{n'}$ that satisfy the equations on the line ℓ
 - Hopefully there’s enough freedom for that... I haven’t checked...
3CNF-SAT

- **3CNF**: formula of the form \(\bigwedge_{i=1}^{n}(X_{i1}^{b_i} \lor X_{i2}^{b_i} \lor X_{i3}^{b_i}) \)
 - \(X_i \) — Boolean variables. \(b_i \in \{-1, 1\} \). \(X^1 := X \). \(X^{-1} := \neg X \)
 - CIRCUIT-SAT is simple to reduce to 3CNF-SAT
 - Introduce a variable for each wire
 - For each gate, add constraints stating that the output wire is the boolean operation applied to input wires
 - Whole circuit ↔ conjunction of constraints

Operations → Constraints

<table>
<thead>
<tr>
<th>Operation</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y \leftarrow \neg x)</td>
<td>((x \lor y) \land (\bar{x} \lor \bar{y}))</td>
</tr>
<tr>
<td>(z \leftarrow x \lor y)</td>
<td>((\bar{x} \lor \bar{y} \lor z) \land (x \lor \bar{y} \lor z) \land (\bar{x} \lor y \lor z) \land (x \lor y \lor z))</td>
</tr>
<tr>
<td>(z \leftarrow x \land y)</td>
<td>((\bar{x} \lor \bar{y} \lor z) \land (x \lor \bar{y} \lor z) \land (\bar{x} \lor y \lor z) \land (x \lor y \lor z))</td>
</tr>
</tbody>
</table>
Barrington’s transformation

Branching programs over a group G

- Input: a bit-string of length n
- Program B: a sequence of triples $[\iota_1, g_{1,0}, g_{1,1}; \iota_2, g_{2,0}, g_{2,1}; \ldots; \iota_m, g_{m,0}, g_{m,1}]$
 - $\iota_i \in \{1, \ldots, n\}$. $g_{ij} \in G$. m — length of the program
- Defines a function $[B] : \{0, 1\}^n \rightarrow G$ by $[B](b_1 \cdots b_n) := g_{1,b_{\iota_1}} \cdot g_{2,b_{\iota_2}} \cdots g_{m,b_{\iota_m}}$.

Branching programs over G with output $g \in G$

B, such that $[B](\{0, 1\}^n) \subseteq \{1, g\}$. Think of g as “yes” and 1 as “no”

Theorem (D. A. Barrington)

For any boolean circuit of depth d with gates of fan-in 2, there exists an equivalent branching program over group S_5 of length 4^d with output ⟨some element of S_5⟩.
Permutation cycles

- An element of S_5 is something like $\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{array} \right)$
- This element has two cycles: $1 \rightarrow 3 \rightarrow 4 \rightarrow 1$ and $2 \rightarrow 5 \rightarrow 2$
- An alternative way of writing: $(1 \ 3 \ 4)(2 \ 5)$
- The cycle type of a permutation is the count of its cycles of each possible length
- $\sigma \in S_5$ is a five-cycle if it consists of a single cycle (of length 5)
 - Five-cycles look like $(1 \ x \ y \ z \ w)$, where $\{x, y, z, w\} = \{2, 3, 4, 5\}$
 - There are 24 five-cycles. Let their set be C_5
Permutation cycles

- An element of S_5 is something like $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$
- This element has two cycles: $1 \to 3 \to 4 \to 1$ and $2 \to 5 \to 2$
- An alternative way of writing: $(1\,3\,4)(2\,5)$

- The cycle type of a permutation is the count of its cycles of each possible length
- $\sigma \in S_5$ is a five-cycle if it consists of a single cycle (of length 5)
 - Five-cycles look like $(1\,x\,y\,z\,w)$, where $\{x, y, z, w\} = \{2, 3, 4, 5\}$
 - There are 24 five-cycles. Let their set be C_5
- Elements $g, g' \in G$ are conjugate, if $\exists h \in G : g' = h^{-1}gh$

Theorem. Two elements of a symmetric group are conjugate if they have the same cycle type
- Suppose that $\sigma \in S_n$ contains a cycle $(x_1\,x_2\,\cdots\,x_k)$. Let $\tau \in S_n$. Then $\tau^{-1}\sigma\tau$ contains the cycle $(\tau(x_1)\,\tau(x_2)\,\cdots\,\tau(x_k))$

Nov-Dec 2021
Proof of Barrington’s theorem (1/2)

- For any $\sigma \in C_5$, a circuit of depth 0 has an equivalent branching program of length 1 with output σ

- Let B be a branching program of length d with output $\sigma \in C_5$. Let $\varsigma \in C_5$. There exists an equivalent branching program B' of length d with output ς
 - There exists $\rho \in S_5$, such that $\varsigma = \rho^{-1}\sigma\rho$. Replace any element τ in B with $\rho^{-1}\tau\rho$

- Let B be a branching program of length d with output $\sigma \in C_5$. There exists a branching program B' (with output σ^{-1}) of length d that accepts a bit-string iff B rejects it
 - Let B’s last step be $\langle \iota, \rho, \tau \rangle$. Let B' be equal to B, except the last step is $\langle \iota, \rho\sigma^{-1}, \tau\sigma^{-1} \rangle$

- There exist $\phi_1, \phi_2 \in C_5$, such that $\phi_1\phi_2\phi_1^{-1}\phi_2^{-1} \in C_5$
 - Let $\phi_1 = (1\ 2\ 3\ 4\ 5)$ and $\phi_2 = (1\ 3\ 5\ 4\ 2)$
 - $(1\ 2\ 3\ 4\ 5) \cdot (1\ 3\ 5\ 4\ 2) \cdot (5\ 4\ 3\ 2\ 1) \cdot (2\ 4\ 5\ 3\ 1) = (1\ 3\ 2\ 5\ 4) =: \psi$
Proof of Barrington’s theorem (2/2)

The proof only handles negations (do not contribute to the depth) and conjunctions

- If B with output σ is equivalent to a circuit A, then there exists B' of same length with output σ^{-1} that is equivalent to $\neg A$
 - This is stated in previous slide
- If B_i of length d_i with output ϕ_i is equivalent to circuit $A_i \ (i \in \{1, 2\})$, then there exists a branching program B with output ψ of length $2(d_1 + d_2)$ that is equivalent to $A_1 \land A_2$
 - Let B'_i of length d_i with output ϕ_i^{-1} be also equivalent to circuit A_i
 - Let $B = B_1; B_2; B'_1; B'_2$
Representing the disjuncts

- Replace each variable in the 3CNF formula with two variables:
 - $X \mapsto X_1 \oplus X_2$

- Apply Barrington’s transformation to each disjunct, which now has the form
 $$(X^{b_1}_1 \oplus X_2) \lor (Y^{b_2}_1 \oplus Y_2) \lor (Z^{b_3}_1 \oplus Z_2)$$

- In a branching program, negation is expressed by swapping the two group elements

- We now have a set of branching programs of some length d
 - They all refer to the same input bits

- Everything above is the instance. The witness is a bit-string $b_1 \cdots b_n$

- The witness expands to sequences from $(S_5)^d$, one for each disjunct
 - Additionally, there is the element $\sigma \in S_5$ meaning “yes”

- Verification — compute the product of each sequence; make sure the result is “yes”
Expanding a sequence \(g_1, g_2, \cdots, g_d \)

Table \(T \in (S_5)^{2 \times d} \) and vector \(\vec{r} \in (S_5)^{d-1} \)

- Let \(\vec{r} \leftarrow (S_5)^{d-1} \). Also define \(r_0 = r_d = 1 \)
- Let the top row \(T[1, \star] \) of \(T \) be \(g_1, g_2, \ldots, g_d \)
- Define \(T[2, i] \leftarrow r_{i-1}^{-1} \cdot T[1, i] \cdot r_i \)

Note that each both rows of \(T \) multiply to \(\sigma \) (public)

The proof string \(\pi \), constructed by \(P \)

- The witness \(b_1 \cdots b_n \) (one bit per cell)
- For each disjunct: vectors \(T[2, \star] \) and \(\vec{r} \) (one element of \(S_5 \) per cell)
 - The witness gives the first row of \(T \)
Possible queries of the verifier

- First, the verifier randomly selects a clause, fixing T and \vec{r} which he will read.
- The verifier now checks one of the following:
 - Gets the entire $T[2, \star]$ and checks that it multiplies to σ
 - Picks $j \leftarrow \{1, \ldots, d\}$. Gets
 - $T[1, j]$ (by querying a bit in the witness), $T[2, j]$
 - r_{j-1} and r_j
 - and checks that $T[2, j] = r_{j-1}^{-1} \cdot T[1, j] \cdot r_i$
- The completeness of this protocol is obvious.
Soundness and zero-knowledge

- **Soundness**: if the formula is not satisfiable, then there is always a clause that evaluates to “false”. The verifier may choose it
 - In this case, $T[1, \star]$ does not multiply to σ
 - If $T[2, \star]$ multiplies to σ, then it was not correctly constructed
 - This is discovered when comparing $T[1, j]$ and $T[2, j]$
- **Soundness error** — proportional to the fraction of satisfiable clauses in the formula
- **Zero-knowledge**: verifier’s view is easy to simulate
 - If it asked for $T[2, \star]$, give d random elements multiplying to σ
 - If it asked for $T[1, j], T[2, j], r_{j-1}, r_j$, give random elements with correct relationship
 - Simulator has to come up with the value of one “new” variable. This is OK.
 - Select other elements of π randomly and create the Merkle tree and openings
Interactive PCPs
Checking many codewords at once

- Let $\mathcal{C} \subseteq \mathbb{F}^n$ be a linear code of dimension k, distance d.
- Let Prover have prepared and sent to Verifier the PCP $\pi \in \mathbb{F}^{m \times n}$.
- How to verify that each row of π is in \mathcal{C} (or close to it)?
 - In other words: is π close to \mathcal{C}^m?
Checking many codewords at once

- Let \(C \subseteq \mathbb{F}^n \) be a linear code of dimension \(k \), distance \(d \).
- Let Prover have prepared and sent to Verifier the PCP \(\pi \in \mathbb{F}^{m \times n} \).
- How to verify that each row of \(\pi \) is in \(C \) (or close to it)?
 - In other words: is \(\pi \) close to \(C^m \)?
- Verifier sends random \(\vec{r} \leftarrow \mathbb{F}^m \) to Prover
- Prover sends \(\vec{c} := (\vec{r})^T \cdot \pi \) to Verifier; Verifier checks that \(\vec{c} \in C \)
- Verifier randomly picks \(j_1, \ldots, j_t \in \{1, \ldots, n\} \). For each \(j_i \):
 - opens all values in \(j_i \)-th column of \(\pi \);
 - checks that their linear combination with \(\vec{r} \) is the \(j_i \)-th element of \(\vec{c} \)

Theorem. If \(\pi \) is at least \(e \)-far from \(C^m \) (for \(e \leq d/4 \)), then
\[
\Pr[d(w^*, C^m) \leq e] \leq \frac{e + 1}{|\mathbb{F}|} \text{ for } w^* \leftarrow \text{span}(\pi)
\]
Checking linear constraints over long messages

- Let \mathcal{C} be Reed-Solomon code: polynomials of deg. $< k$ evaluated on η_1, \ldots, η_n
- Let $(p(\zeta_1), \ldots, p(\zeta_\ell))$ (with $\ell \leq k$) be the message corresponding to codeword $p(\eta_1), \ldots, p(\eta_n)$, where $p \in \mathbb{F}^{\leq k-1}[X]$
- Let $\vec{x} \in \mathbb{F}^{m\ell}$, or $x \in \mathbb{F}^{m \times \ell}$ (a msg. for \mathcal{C}^m). Let $\pi \in \mathcal{C}^m$ be the encoding of x
- Let $A \in \mathbb{F}^{m\ell \times s}$ and $\vec{b} \in \mathbb{F}^s$. Want to verify: $A\vec{x} = \vec{b}$
Checking linear constraints over long messages

Verifier sends $\vec{r} \leftarrow F^s$. Both compute

$(\vec{r})^T \cdot A = (z_{11}, \ldots, z_{1\ell}, \ldots, z_{m1}, \ldots, z_{m\ell})$; think as $m \times \ell$ table

Let $\text{col} : \{1, \ldots, m\} \times \{1, \ldots, \ell\} \rightarrow \{1, \ldots, m\ell\}$ translate indices between vector and table

Polynomials $z_1, \ldots, z_m \in F^{\leq \ell - 1}[X]$, such that $z_i(\zeta_j) = z_{ij}$

Prover lets $p_i \in F^{\leq k - 1}$ be the polynomial corresponding to i-th row of π

Prover sends $q(X) = \sum_{i=1}^m z_i(X) \cdot p_i(X)$ to Verifier

I.e. $q(\zeta_j) = \sum_{i=1}^m z_{ij} \cdot x[i, j] = \sum_{i=1}^m \sum_{t=1}^s r_t A_{t, \text{col}(i,j)} x_{\text{col}(i,j)}$

I.e. $\sum_{j=1}^\ell q(\zeta_j) = \sum_{t=1}^s r_t \sum_{i,j=1,1}^{m,\ell} A_{t,\text{col}(i,j)} x_{\text{col}(i,j)} = \sum_{t=1}^s r_t b_t$

Verifier checks this

Verifier opens columns j_1, \ldots, j_t of π (random $j_1, \ldots, j_t \in \{1, \ldots, n\}$) and checks:

$q(\eta_j) = \sum_{i=1}^m z_i(\eta_j) \cdot \pi[i, j]$ (for each $j \in \{j_1, \ldots, j_t\}$)
On soundness

- If $A\vec{x} \neq \vec{b}$, then $(\vec{r})^T A\vec{x} = (\vec{r})^T \vec{b}$ only with probability $1/|\mathbb{F}|$
- If Prover sends q' that satisfies the first check, but $(\vec{r})^T A\vec{x} \neq (\vec{r})^T \vec{b}$, then q' and q differ at many places
 - They are same on at most $k + \ell - 2$ places
 - They can also be same at columns corresponding to π not being a codeword of C^m
 - After “Checking many codewords at once”, the number of such columns is small
Checking quadratic constraints

- Private: \(x, y, z \in \mathbb{F}^{m \times \ell} \). Public: \(a, b \in \mathbb{F}^{m \times \ell} \)
- Check: \(\forall (i, j) \in \{1, \ldots, m\} \times \{1, \ldots, \ell\} : x[i, j] \cdot y[i, j] + a[i, j] \cdot z[i, j] = b[i, j] \)
Checking quadratic constraints

- Private: $x, y, z \in F^{m \times \ell}$. Public: $a, b \in F^{m \times \ell}$
- Check: $\forall (i, j) \in \{1, \ldots, m\} \times \{1, \ldots, \ell\}: x[i, j] \cdot y[i, j] + a[i, j] \cdot z[i, j] = b[i, j]$
- Let $\pi^x, \pi^y, \pi^z \in C^m$ encode x, y, z. Let $U^a, U^b \in C^m$ encode a, b
- Let $p_i^x, p_i^y, p_i^z, p_i^a, p_i^b$ interpolate the i-th row of $\pi^x, \pi^y, \pi^z, U^a, U^b$
- Verifier sends $\vec{r} \leftarrow F^m$ to Prover
- Prover responds with $q(X) = \sum_{i=1}^m r_i \left(p_i^x(X) \cdot p_i^y(X) + p_i^a(X) \cdot p_i^z(X) - p_i^b(X) \right)$
- Verifier checks that $q(\zeta_1) = \cdots = q(\zeta_\ell) = 0$
- Verifier opens columns j_1, \ldots, j_t of π^x, π^y, π^z (random $j_1, \ldots, j_t \in \{1, \ldots, n\}$)
 - Checks that $q(\eta_j) \overset{?}{=} \sum_{i=1}^m r_i (\pi^x[i, j] \cdot \pi^x[i, j] + U^a[i, j] \cdot \pi^z[i, j] - U^b[i, j])$
 (for each $j \in \{j_1, \ldots, j_t\}$)
- Soundness: similar to checking linear constraints
Making a proof for an arithmetic circuit

- Collect the inputs and outputs of multiplication gates into x, y, z. Let $w = (x \ y \ z)^T$
 - Let \vec{w} be the same as w, but as a vector
- Let a and b encode quadratic constraints of $z[i, j] = x[i, j] \cdot y[i, j]$
- Let A, \vec{b} encode linear constraints: $A \vec{w} = \vec{b}$ is used to encode
 - ...that inputs to multiplication gates are linear combinations of outputs from previous multiplication gates
 - ...that inputs and outputs to the circuit have certain values
- Run “checking quadratic constraints” on π^x, π^y, π^z
- Run “checking linear constraints” and “checking many codewords at once” on $\pi^w = (\pi^x \ \pi^y \ \pi^z)^T$
 - The set of opened columns $\{j_1, \ldots, j_t\}$ is always the same
On zero-knowledge

- Source of leaks: linear combination of rows of π
 - Solution: add random rows to x
 - Let these rows be unconstrained by the linear constraints
 - For quadratic constraints, add random multiplication triples to x, y, z

- Source of leaks: opening columns of π
 - Rows are Shamir’s secret sharings of the real secrets
 - Up to $k - \ell$ columns may be opened without leaking the secrets
Interactive Oracle Proofs
Evaluating a polynomial and PCPs

- π — a proof string encoding values of polynomial $f : \mathbb{F} \rightarrow \mathbb{F}$
- V may ask to evaluate f at any element of \mathbb{F}
- Must π contain values $f(v)$ for all $v \in \mathbb{F}$?
Evaluating a polynomial and PCPs

- π — a proof string encoding values of polynomial $f : \mathbb{F} \to \mathbb{F}$
- V may ask to evaluate f at any element of \mathbb{F}
- Must π contain values $f(v)$ for all $v \in \mathbb{F}$?
- No. If V wants $f(r)$, P can just give it $v = f(r)$. To prove it:
 - $f(r) - v = 0$. I.e. $g(X) \equiv f(X) - v$ has a zero at r
 - Hence $g(X) = (X - r) \cdot w(X)$ for some polynomial w
 - P commits to w. V checks degree of w and the equality
 - “Interactive Oracle Proof” (IOP)
- π contains values of f on a sufficiently large subset of \mathbb{F}
IOP for low-degree test (1/2)

- Let $f : \mathbb{F} \rightarrow \mathbb{F}$ be committed, V wants to check that $\deg f < 2^d$
- Let π contain values of f on a set $L \subseteq \mathbb{F}$
- Let $L \leq \mathbb{F}^*$, $|L| = 2^n$ ($n > d$). Note: L is a cyclic group
 - i.e. $|\mathbb{F}| - 1$ must be divisible by 2^n
IOP for low-degree test (1/2)

- Let \(f : \mathbb{F} \to \mathbb{F} \) be committed, \(V \) wants to check that \(\deg f < 2^d \)
- Let \(\pi \) contain values of \(f \) on a set \(L \subseteq \mathbb{F} \)
- Let \(L \leq \mathbb{F}^* \), \(|L| = 2^n \) \((n > d) \). Note: \(L \) is a cyclic group
 - i.e. \(|\mathbb{F}| - 1\) must be divisible by \(2^n \)
- Let \(f(X) = \sum_{i=0}^{2^d-1} a_i X^i \). \(P \) defines following polynomials:

\[
\begin{align*}
 f_0(X) &:= \sum_{i=0}^{2^d-1-1} a_{2i} X^i \\
 f_1(X) &:= \sum_{i=0}^{2^d-1-1} a_{2i+1} X^i
\end{align*}
\]

\(q(X, Y) := f_0(X) + Y \cdot f_1(X) \)

Note: \(f(X) = q(X^2, X) \)
IOP for low-degree test (1/2)

- Let $f : \mathbb{F} \to \mathbb{F}$ be committed, V wants to check that $\deg f < 2^d$.
- Let π contain values of f on a set $L \subseteq \mathbb{F}$.
- Let $L \leq \mathbb{F}^*$, $|L| = 2^n$ ($n > d$). Note: L is a cyclic group.
 - i.e. $|\mathbb{F}| - 1$ must be divisible by 2^n.
- Let $f(X) = \sum_{i=0}^{2^d-1} a_i X^i$. P defines following polynomials:

 $f_0(X) := \sum_{i=0}^{2^d-1-1} a_{2i} X^i$
 $f_1(X) := \sum_{i=0}^{2^d-1-1} a_{2i+1} X^i$

 $q(X,Y) := f_0(X) + Y \cdot f_1(X)$

 Note: $f(X) = q(X^2, X)$

- V sends a random $r \in \mathbb{F}$ to P.
- P commits to $f'(X) := q(X, r)$ on the set $L' = \{r^2 \mid r \in L\}$.
- P proves to V that $\deg f' < 2^{d-1}$. Recursion!
IOP for low-degree test (2/2)

Verifying relationship of \(f' \), \(q \), \((f) \). Do the following multiple times:

- \(V \) picks a random \(s \in L \)
 - Denote \(s' = -s \). Remember \(f(X) = q(X^2, X) \), \(f'(X) = q(X, r) \), \(q \) is linear in second argument
 - Denote \(g(X) = q(s^2, X) \). Then \(g \) is linear

- \(V \) verifies that

\[
\frac{(f(s) - f(-s))}{(2s)} = \frac{(f(s) - f'(s^2))}{(s - r)}
\]

Base of the recursion. \(d = 0 \)

- Want to show \(\deg f < 1 \), i.e. \(f \) is constant. \(P \) sends that constant to \(V \)
 - This constant corresponds to the commitment to \(f \)
IOP for low-degree test (2/2)

Verifying relationship of f', q, (f). Do the following multiple times:

- V picks a random $s \in L$
 - Denote $s' = -s$. Remember $f(X) = q(X^2, X)$, $f'(X) = q(X, r)$,
 - q is linear in second argument
 - Denote $g(X) = q(s^2, X)$. Then g is linear

- V verifies that

\[
\frac{(f(s) - f(-s))/(2s)}{(q(s^2, s) - q(s^2, s'))/(s - s')} = \frac{(f(s) - f'(s^2))/(s - r)}{(q(s^2, s) - q(s^2, r))/(s - r)}
\]

Base of the recursion. $d = 0$

- Want to show $\deg f < 1$, i.e. f is constant. P sends that constant to V
 - This constant corresponds to the commitment to f
IOP for low-degree test (2/2)

Verifying relationship of f', q, (f). Do the following multiple times:

- V picks a random $s \in \mathbb{L}$
- Denote $s' = -s$. Remember $f(X) = q(X^2, X)$, $f'(X) = q(X, r)$, q is linear in second argument
- Denote $g(X) = q(s^2, X)$. Then g is linear

V verifies that

$$
\frac{(f(s) - f(-s))}{2s} = \frac{(f(s) - f'(s^2))}{s - r} \\
\frac{(q(s^2, s) - q(s^2, s'))}{s - s'} = \frac{(q(s^2, s) - q(s^2, r))}{s - r} \\
\frac{(g(s) - g(s'))}{s - s'} = \frac{(g(s) - g(r))}{s - r}
$$

Base of the recursion. $d = 0$

- Want to show $\deg f < 1$, i.e. f is constant. P sends that constant to V
 - This constant corresponds to the commitment to f
Analysis of the low-degree test

- If f is far from $\mathbb{F}^{<2^d}[X]$, then f' is far from $\mathbb{F}^{<2^{d-1}}[X]$
 - Precise analysis is complex. f' is a random linear combination of f_0 and f_1. If at least one of them is far from 2^{d-1}-degree polynomials, then so is f'
- The consistency check — f' is given linear combination of f_0 and f_1 — fails with probability depending on the distance of f' from this combination

Theorem

Let the relationship checking be done ℓ times in each round. Let $\rho = 2^{(d-n)/2}$ Let $\Delta(f, \mathbb{F}^{<2^d}[X]) \geq \delta$. Then the verifier accepts with probability at most

$$(\rho + \eta)^\ell + \frac{(2^d + 1)^2}{(2\eta)^7 \cdot |\mathbb{F}|}$$

for any $\eta \in (0, \rho/20)$.

Theorem

Let $x, y \in \mathbb{F}^n$, let $S \leq \mathbb{F}^n$, let ε be such, that $\Delta(x, S) > \varepsilon$. Then exists at most a single $\alpha \in \mathbb{F}$, such that $\Delta(\alpha x + y, S) \leq \varepsilon/2$.

Proof.

1. Suppose there exist $\alpha_1, \alpha_2 \in \mathbb{F}$, such that $\Delta(\alpha_i x + y, S) \leq \varepsilon/2$
2. Then $\Delta((\alpha_1 - \alpha_2)x, S) \leq \varepsilon$
 - Because $S - S := \{s_1 - s_2 \mid s_1, s_2 \in S\} = S$
3. Then also $\Delta(x, S) \leq \varepsilon$
ZK IOP for low degree

- P sends to V the commitment for a random $g : \mathbb{F} \rightarrow \mathbb{F}$
 - Commitment encodes values of g on the set L
 - For the protocol to work, $\deg g < 2^d$ must hold
 - But that condition is not necessary for soundness
- V picks a random $\rho \in \mathbb{F}$ and sends to P
- P and V run the low-degree test protocol for $\rho \cdot f + g$

This is ZK modulo V’s queries to f’s values
IOP as polynomial commitment (almost)

- P wants to commit to a polynomial f of degree $\leq d$
- P wants to show that $f(z_1) = v_1, \ldots, f(z_k) = v_k$
- V sends random values $r_1, \ldots, r_k \in \mathbb{F}$
- P proves that the following has degree $\leq d$:

$$f(X) + \sum_{i=1}^{k} r_i \cdot X \cdot \frac{f(X) - v_i}{X - z_i}$$

- I.e. all evaluations of f are made in a single batch
Univariate Sum-Check (1/2)

Let $p : \mathbb{F} \to \mathbb{F}$ (prover committed to it) and $H \leq \mathbb{F}^*$. Show that

$$\sum_{x \in H} p(x) = 0$$

Let $\deg p = d$ and $|H| = n$

Theorem

Previous equality holds iff $p(X) = h(X) \cdot Z_H(X) + X \cdot f(X)$, for some polynomials h and f, where $\deg h \leq d - n$ and $\deg f \leq n - 2$

Proof of the theorem consists of:

- Polynomial division with remainder
- Some (or a bit more) group theory to establish that the remainder has no free term
Some group theory

Let $H \leq \mathbb{F}^*$, let $|H| = n$

- Fact: $\sum_{a \in H} a = 0$
 - $X^n - 1 = Z_H(X) = \prod_{a \in H} (X - a)$. Consider the coefficient of X^{n-1}

- Fact: $\sum_{a \in H} a^m = 0$, if m is not a multiple of n
 - If $m \perp n$, then $\{a^m \mid a \in H\} = H$
 - If $d = \gcd(m, n) > 1$, then the sum passes several times through a subgroup $H' \leq H$ of size n/d

- Fact: If $\deg f < n$, then $\sum_{a \in H} f(a) = n \cdot f(0)$
 - Indeed, all terms of f, except the free term, sum to 0
Polynomial division with remainder

Theorem

Let \(p \in \mathbb{F}[X] \). Then \(\sum_{a \in H} p(a) = 0 \) iff \(p(X) = h(X) \cdot Z_H(X) + X \cdot f(X) \), for some polynomials \(h \) and \(f \), where \(\deg h \leq d - n \) and \(\deg f \leq n - 2 \).

- If such polynomials exist, then \(\sum_{a \in H} p(a) = \sum_{a \in H} a \cdot f(a) = 0 \) by previous slide.
- Other direction: \(p(X) = h(X) \cdot Z_H(X) + r(X) \) for some \(r \in \mathbb{F}^{\leq n-1}[X] \). If \(\sum_{a \in H} p(a) = 0 \), then also \(n \cdot r(0) = \sum_{a \in H} r(a) = 0 \), i.e. \(r(0) = 0 \), i.e. \(r \) has no free term.
Univariate Sum-Check (2/2)

Protocol

- Prover commits to h. Verifier checks that its degree is at most $d - n$.
- Run the check that

$$ f(X) = (p(X) - h(X) \cdot Z_H(X)) \cdot X^{-1} $$

has degree at most $n - 1$.
- Whenever verifier has to compute some $f(r)$, it will find it from $p(r)$ and $h(r)$.
- The two checks for degree bounds are combined into one, as described previously.

- Note that $Z_H(X) = X^n - 1$, hence is easy to evaluate.
IOP for Rank-1 Constraint Systems (R1CS)
Rank-1 Constraint Systems

Definition

- R1CS is given by matrices $A, B, C \in \mathbb{F}^{m \times n}$
- We say that there are n variables and m constraints
- A solution to R1CS is a vector $\vec{s} \in \mathbb{F}^n$, such that $s_1 = 1$ and $A\vec{s} \circ B\vec{s} = C\vec{s}$
- Here “\circ” denotes componentwise multiplication

From arithmetic circuits to R1CS

- Each input or gate (addition, multiplication, constant) is a variable
- Each gate g is a constraint:
 - For “$x_3 = x_1 + x_2$”: Let $A[g, x_1] = A[g, x_2] = B[g, 0] = C[g, x_3] = 1$
 - For “$x_3 = x_1 \cdot x_2$”: Let $A[g, x_1] = B[g, x_2] = C[g, x_3] = 1$
 - For “$x = c$”: Let $A[g, x_1] = B[g, 0] = 1, C[g, 0] = c$
Commitment

- Let $H \leq \mathbb{F}^*$, $|H| = m = n$. Let $\phi : H \to \{1, \ldots, n\}$ be bijective.
- Let $\vec{s}_A, \vec{s}_B, \vec{s}_C \in \mathbb{F}^m$, such that $\vec{s}_M = M \cdot \vec{s}$ for $M \in \{A, B, C\}$.
- Let $\hat{s}, \hat{s}_A, \hat{s}_B, \hat{s}_C : \mathbb{F} \to \mathbb{F}$ be polynomials of degree $\leq n$, such that $\hat{s}(h) = s_{\phi(h)}$ and $\hat{s}_M(h) = (s_M)_{\phi(h)}$ for all $h \in H$.
- The prover commits to $\hat{s}, \hat{s}_A, \hat{s}_B, \hat{s}_C$ over some group L, $H \leq L \leq \mathbb{F}^*$.
- Verifier checks the degree of committed $\hat{s}, \hat{s}_A, \hat{s}_B, \hat{s}_C$.
- Note that it is possible to get the evaluation of the polynomials at any point in \mathbb{F}.
 - This, and the other steps require the low-degree checking of more polynomials.
 - All these checks can be combined into one.
Checking the R1CS equation

- Want to check that $\hat{s}_A(h) \cdot \hat{s}_B(h) - \hat{s}_C(h) = 0$ for all $h \in H$
- I.e. $\exists w \in \mathbb{F}[X]$, such that $\hat{s}_A \cdot \hat{s}_B - \hat{s}_C = Z_H \cdot w$
- Prover finds w, commits to it. Verifier checks the degree
- Verifier picks random $r \in \mathbb{F}$, sends to prover
- They evaluate $\hat{s}_A, \hat{s}_B, \hat{s}_C, w$ on point r
- Verifier evaluates $Z_H(r)$
- Verifier checks that $\hat{s}_A(r) \cdot \hat{s}_B(r) - \hat{s}_C(r) = Z_H(r) \cdot w(r)$
Checking matrix-vector multiplication

We want to check, that for all $h \in H$:

$$\hat{s}_M(h) = \sum_{j \in H} M[\phi(h), \phi(j)] \cdot \hat{s}(j)$$

This is the same as

$$\hat{s}_M(X) = \sum_{j \in H} \widetilde{M}(X, j) \cdot \hat{s}(j)$$

where \widetilde{M} is the polynomial extension of $M[\cdot, \cdot]$ to the whole \mathbb{F}^2.

Verifier picks $r \leftarrow \mathbb{F}$ and does the following Sum-Check:

$$0 = \sum_{j \in H} q(j) \quad \text{where} \quad q(Y) = \widetilde{M}(r, Y) \cdot \hat{s}(Y) - \hat{s}_M(r)/n$$

In the end, verifier has to evaluate $\widetilde{M}(r, r')$ for some $r' \in \mathbb{F}$. How?
Trusted commitments for computing $\widehat{M}(r, r')$

- Let M have $k = |K|$ non-zero entries for some $K \leq \mathbb{F}^*$
- Let $row, col : K \to H$ give the locations of non-zero entries
- Let $u \in \mathbb{F}[X, Y]$ satisfy $u(h, h) \neq 0$ and $u(h, h') = 0$ for all $h, h' \in H$, $h \neq h'$
 - ...and let individual degrees of u be $\leq (n - 1)$
 - ...and let u be easy to evaluate on the whole \mathbb{F}^2
- Define $val : K \to \mathbb{F}$ by $val(\kappa) = \frac{M[\text{row}(\kappa), \text{col}(\kappa)]}{u(\text{row}(\kappa), \text{row}(\kappa)) \cdot u(\text{col}(\kappa), \text{col}(\kappa))}$. Then
 $$\widehat{M}(X, Y) = \sum_{\kappa \in K} u(X, \widetilde{\text{row}}(\kappa)) \cdot u(Y, \widetilde{\text{col}}(\kappa)) \cdot \widetilde{val}(\kappa)$$
 equals with $M[\cdot, \cdot]$ at all positions in $H \times H$
- For given r, r', define polynomial $p(X) = u(r, \widetilde{\text{row}}(X)) \cdot u(r, \widetilde{\text{col}}(X)) \cdot \widetilde{val}(X)$
 - Prover could give claimed value $\widehat{M}(r, r')$ and Sum-Check on p could verify it
 - A trusted party has to commit to $\widetilde{\text{row}}, \widetilde{\text{col}}, \widetilde{val}$
Sum-Checking p

- Degree of p is $< kn$. For Sum-Check, prover has to compute and commit to a polynomial of degree $< kn - k$
- Instead, P commits to the unique $f \in \mathbb{F}^{<k}[X]$, where $f(\kappa) = p(\kappa)$ for all $\kappa \in K$, and runs the Sum-Check with f instead
Sum-Checking p

- Degree of p is $< kn$. For Sum-Check, prover has to compute and commit to a polynomial of degree $< kn - k$
- Instead, P commits to the unique $f \in \mathbb{F}^{<k}[X]$, where $f(\kappa) = p(\kappa)$ for all $\kappa \in K$, and runs the Sum-Check with f instead
- Verifier must be able to verify that $f(\kappa) = p(\kappa)$ for all $\kappa \in K$
- Below we will get $p(\kappa) = \xi(\kappa)/\psi(\kappa)$ for some $O(k)$-degree polynomials ξ and ψ, and for all $\kappa \in K$
 - ...such that ξ and ψ are easy to compute for the Verifier
Sum-Checking p

- Degree of p is $< kn$. For Sum-Check, prover has to compute and commit to a polynomial of degree $< kn - k$
- Instead, P commits to the unique $f \in \mathbb{F}^{<k}[X]$, where $f(\kappa) = p(\kappa)$ for all $\kappa \in K$, and runs the Sum-Check with f instead
- Verifier must be able to verify that $f(\kappa) = p(\kappa)$ for all $\kappa \in K$
- Below we will get $p(\kappa) = \xi(\kappa)/\psi(\kappa)$ for some $O(k)$-degree polynomials ξ and ψ, and for all $\kappa \in K$
 - ...such that ξ and ψ are easy to compute for the Verifier
- Equality check is then: for all $\kappa \in K : \psi(\kappa) \cdot f(\kappa) - \xi(\kappa) = 0$
- Standard method for checking this: P commits to some $\varphi(X)$, such that

$$\psi(X) \cdot f(X) - \xi(X) = Z_K(X) \cdot \varphi(X)$$

and verifier checks that equality on a point, and the degree of $\varphi(X)$
The polynomial $u(X, Y)$

- Put $u(X, Y) = (Z_H(X) - Z_H(Y))/(X - Y)$. It is a polynomial.
- Indeed, as $H \leq \mathbb{F}^*$, we have $Z_H(X) = X^n - 1$ (recall $|H| = n$).
- Hence
 $$u(X, Y) = X^{n-1} + X^{n-2}Y + X^{n-3}Y^2 + \cdots + XY^{n-2} + Y^{n-1}$$
- Also, $u(X, X) = n \cdot X^{n-1}$.
- $u(r, r')$ is easy ($O(\log n)$ field operations) to evaluate for any r, r'.
The polynomials ξ and ψ

For all $\kappa \in K$:

$$u(r, \tilde{\text{row}}(\kappa)) = \frac{Z_H(r) - Z_H(\tilde{\text{row}}(\kappa))}{r - \tilde{\text{row}}(\kappa)} = \frac{Z_H(r)}{r - \tilde{\text{row}}(\kappa)}$$

$$u(r', \tilde{\text{col}}(\kappa)) = \frac{Z_H(r') - Z_H(\tilde{\text{col}}(\kappa))}{r' - \tilde{\text{col}}(\kappa)} = \frac{Z_H(r')}{r' - \tilde{\text{col}}(\kappa)}$$

Hence

$$p(\kappa) = u(r, \tilde{\text{row}}(\kappa)) \cdot u(r, \tilde{\text{col}}(\kappa)) \cdot \tilde{\text{val}}(\kappa) = \frac{Z_H(r)Z_H(r') \cdot \tilde{\text{val}}(\kappa)}{(r - \tilde{\text{row}}(\kappa))(r' - \tilde{\text{col}}(\kappa))}$$

Define $\xi(X) = Z_H(r)Z_H(r') \cdot \tilde{\text{val}}(X)$ and $\psi(X) = (r - \tilde{\text{row}}(X))(r' - \tilde{\text{col}}(X))$
IOP for execution traces (zkSTARKs)
Relation description

- A matrix $\mathbf{M} \in \mathbb{F}^{T \times w}$
- Polynomials P_i, $i \in \{1, \ldots, k\}$, defined as follows:
 - Set of positions: $\text{Pos}_i \subset \{0, \ldots, T-1\} \times \{1, \ldots, w\}$
 - $P_i : \mathbb{F}^{\text{Pos}_i} \to \mathbb{F}$
 - Additionally: set of rows: $\mathbf{R}_i \subseteq \{0, \ldots, T-1\}$
 - Let d_i be the total degree of P_i
- Polynomials are satisfied by the matrix, if $\forall i \in \{1, \ldots, k\}$, $\forall j \in \mathbf{R}_i$

$$P_i(\lambda(r,c).\mathbf{M}[r + j, c]) = 0$$

- Let Pos_i, \mathbf{R}_i be such, that no indices go out of bounds
- Main parameters to keep small: T, k, $\max d_i$
Arithmetic intermediate representation

- Pick an element $o \in \mathbb{F}$ with large multiplicative order
- Let $t_i \in \mathbb{F}^{\leq T-1}[X]$ be given by $t_i(o^j) = M[j, i]
- Let $C_i \in \mathbb{F}^{\leq d_i(T-1)}$, where $C_i(X) = P_i(\lambda(r, c).t_c(o^r \cdot X))$
- Prover commits to $t_1, \ldots, t_w, C_1, \ldots, C_k$ (over some larger $L \leq \mathbb{F}$)
- Check that all committed polynomials have low degrees
- Check that for all i: C_i is correctly defined.
 - Evaluate C_i on random $z \in \mathbb{F}$. Evaluate polynomials t_c on points $o^r \cdot z$ for all $(r, c) \in Pos_i$. Compute the value of P_i and compare it against $C_i(z)$
- Check that $C_i(o^j) = 0$ for all $j \in R_i$
- For ZK: add more rows with random content to the bottom of M
Fast Fourier Transform and other computations with polynomials
Motivation

- In the protocols we have seen, the Prover (and sometimes also the Verifier) has to perform complex computations with polynomials:
 - Evaluate polynomials at a large number of points
 - Multiply polynomials
 - Divide polynomials

- The polynomials themselves are large as well

- If we are not careful, these operations could easily take time $O(d^2)$, where d is the degree of the polynomials
Discrete Fourier transformation (DFT)

- We work in a finite field \(\mathbb{F} \).
- Let \(\omega \in \mathbb{F} \) be a primitive \(n \)-th root of unity, i.e.
 - \(\omega^n = 1 \)
 - \(\omega^k \neq 1 \) for \(1 \leq k < n \)
- Such \(\omega \) exists iff \(n \) divides \(|\mathbb{F}^*| \).
- Theorem: the multiplicative group of a finite field is cyclic.
 - Such \(\omega \) satisfies \(\sum_{j=0}^{n-1} \omega^{kj} = 0 \) for all \(1 \leq k < n \).
 - Indeed, \((\sum_{j=0}^{n-1} \omega^{kj})(\omega^k - 1) = \omega^{kn} - 1 = 0 \), but \(\omega^k \neq 1 \).
- DFT maps the sequence \((v_0, \ldots, v_{n-1}) \in \mathbb{F}^n \) to the sequence \((v'_0, \ldots, v'_{n-1}) \), where
 \[
 v'_i = \sum_{j=0}^{n-1} v_j \cdot \omega^{ij}.
 \]
DFT and polynomials

Let \(f(X) = \sum_{i=0}^{n-1} a_i X^i \)

DFT of \((a_0, \ldots, a_{n-1})\) corresponds to evaluating

\[
\begin{align*}
&f(1), f(\omega), f(\omega^2), \ldots, f(\omega^{n-1})
\end{align*}
\]
Inverse DFT

Let \(v_0, \ldots, v_{n-1}, v'_0, \ldots, v'_{n-1} \in \mathbb{F} \)

\[
v'_i = \sum_{j=0}^{n-1} v_j \cdot \omega^{ij} \quad \Leftrightarrow \quad v_i = \frac{1}{n} \sum_{j=0}^{n-1} v'_j \cdot \omega^{-ij}
\]

I.e. inverse DFT is the same as DFT, except

- a different root of unity is used (\(\omega^{-1} \) vs. \(\omega \))
- The result is scaled by \(1/n \)

In terms of polynomials, IDFT corresponds to interpolation
FFT (Cooley-Tukey alg. for DFT)

- Let $n = n_1 \cdot n_2$. It is OK, if $\gcd(n_1, n_2) > 1$
 - Typically, n is a power of 2 and $n_1 = 2$
- We had $i \in \{0, \ldots, n - 1\}$. Let $i = n_2i_1 + i_2$, where $i_1 \in \{0, \ldots, n_1 - 1\}$ and $i_2 \in \{0, \ldots, n_2 - 1\}$
- Let $\omega_1 = \omega^{n_2}$ and $\omega_2 = \omega^{n_1}$
- Denote $v[j_1, j_2] = v_{j_1 + n_1j_2}$ and $v'[i_1, i_2] = v'_{n_2i_1 + i_2}$
FFT (Cooley-Tukey alg. for DFT)

\[v'[i_1, i_2] = \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} v[j_1, j_2] \cdot \omega^{(n_2i_1+i_2)(j_1+n_1j_2)} = \]

\[\sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} v[j_1, j_2] \cdot \omega^{i_2j_1} \omega_1^{i_1j_1} \omega_2^{i_2j_2} = \sum_{j_1=0}^{n_1-1} \left[\omega^{i_2j_1} \left(\sum_{j_2=0}^{n_2-1} v[j_1, j_2] \cdot \omega_2^{i_2j_2} \right) \right] \omega_1^{i_1j_1} \]

- \(\text{FFT of } v[j_1, \ast] \)
- \(\text{scaling / “rotation”} \)
- \(\text{FFT giving } v'[\ast, i_2] \)
FFT (Cooley-Tukey alg. for DFT)

1. Populate $V \in \mathbb{F}^{n_1 \times n_2}$ by $V[i, j] \leftarrow v_{i+n_1j}$
2. Compute $W \in \mathbb{F}^{n_1 \times n_2}$ by $W[i, ⋆] \leftarrow \text{FFT}(V[i, ⋆])$
3. Compute $W' \in \mathbb{F}^{n_1 \times n_2}$ by $W'[i, j] \leftarrow \omega^{ij}W[i, j]$
4. Compute $V' \in \mathbb{F}^{n_1 \times n_2}$ by $V'[⋆, j] \leftarrow \text{FFT}(W'[⋆, j])$
5. Read off $v'_{n_2i+j} \leftarrow V'[i, j]$

- **Time complexity:** $T(n) = n_1T(n_2) + n_2T(n_1) + O(n)$
- If $n_1 = 2$ then $T(n) = 2T(n/2) + O(n)$. Hence $T(n) = O(n \log n)$
Cooley-Tukey alg. for $n = 2 \cdot (n/2)$
Multiplication of polynomials

- \(f(X) = \sum_{i=0}^{n} a_i X^i \) and \(g(X) = \sum_{i=0}^{n} b_i X^i \)
- “Usual” algorithm requires the computation of \(a_i b_j \) for each \(i \) and \(j \), giving \(O(n^2) \) complexity
- Instead of that, we could
 - Evaluate \(f \) and \(g \) on (at least) \(2n + 1 \) points \((x_1, \ldots, x_{2n+1})\), using FFT
 - Multiply the evaluations: \(h_i = f(x_i) \cdot g(x_i) \)
 - Interpolate \(h_1, \ldots, h_{2n+1} \), using inverse FFT
- Time complexity: \(O(n \log n) \)
Division of polynomials

- Given \(f, g \in \mathbb{F}[X] \). Let \(g \) be monic (coeff. of \(X^{\deg g} \) is 1)
- Find \(q, r \in \mathbb{F}[X] \), such that \(\deg r < \deg g \) and \(f = qg + r \)
Division of polynomials

Given $f, g \in \mathbb{F}[X]$. Let g be monic (coeff. of $X^{\deg g}$ is 1)

Find $q, r \in \mathbb{F}[X]$, such that $\deg r < \deg g$ and $f = qg + r$

For $p(X) = \sum_{i=0}^{n} a_i X^i$ define its reverse $R[p](X) = \sum_{i=0}^{n} a_{n-i} X^i$

$R[p](x) = x^n p(1/x)$. Hence $R[p_1 \cdot p_2] = R[p_1] \cdot R[p_2]$
Division of polynomials

- Given \(f, g \in \mathbb{F}[X] \). Let \(g \) be monic (coeff. of \(X^{\deg g} \) is 1)
- Find \(q, r \in \mathbb{F}[X] \), such that \(\deg r < \deg g \) and \(f = qg + r \)
- For \(p(X) = \sum_{i=0}^{n} a_i X^i \) define its reverse \(R[p](X) = \sum_{i=0}^{n} a_{n-i} X^i \)
- \(R[p](x) = x^n p(1/x) \). Hence \(R[p_1 \cdot p_2] = R[p_1] \cdot R[p_2] \)

\[
R[f] = R[qg + r] = R[q]R[g] + X^{\deg f - \deg r} R[r]
\]

Consider this modulo \(X^{\deg f - \deg g + 1} \). This modulus divides \(X^{\deg f - \deg r} \)

\[
R[f] \equiv R[q]R[g] \pmod{X^{\deg f - \deg g + 1}}
\]

\[
R[q] \equiv R[f]R[g]^{-1} \pmod{X^{\deg f - \deg g + 1}}
\]

- We are looking for ways to invert polynomials modulo \(X^l \)
Hensel lifting

- Input: \(h \in \mathbb{F}[X] \) and \(p = h^{-1} \pmod{X^l} \)
- Output: \(h^{-1} \pmod{X^{2l}} \)
Hensel lifting

- Input: \(h \in \mathbb{F}[X] \) and \(p = h^{-1} \pmod{X^l} \)
- Output: \(h^{-1} \pmod{X^{2l}} \)
- Looking for result in the form \(p + qX^l \) for some \(q \in \mathbb{F}[X] \)
- Let \(h = h_0 + h_1X^l \) with \(\deg h_0 < l \). Then \(ph_0 = 1 + rX^l \) and
 \[
 (p + qX^l)(h_0 + h_1X^l) \equiv 1 + (r + qh_0 + ph_1)X^l \pmod{X^{2l}}
 \]
- pick \(q \) so, that \((r + qh_0 + ph_1)\) is a multiple of \(X^l \). I.e.
 \[
 q \equiv (ph_1 + r)/(-h_0) \pmod{X^l}
 \]
 \[
 q \equiv -p(ph_1 + r) \pmod{X^l}
 \]
- Time complexity of inverting \(h \) modulo \(X^n \): \(O(n \log n) \)
 - Indeed, \(T(n) = T(n/2) + O(n \log n) \)
FFT again, specialized to $n_1 = 2$

$$f(X) = f_0(X^2) + X \cdot f_1(X^2)$$

- Let $L_0 = \{1, \omega, \omega^2, \ldots, \omega^{n-1}\}$. Let $\psi(X) = X^2$. Let $L_1 = \psi(L_0)$
- In order to compute $f(L_0)$:
 - Compute $f_0(L_1)$ and $f_1(L_1)$
 - Find $f(\omega^i) = f_0(\omega^{2i}) + \omega^i \cdot f_1(\omega^{2i})$
FFTrees from 2-to-1 transforms

- Let $\psi(X) = u(X)/v(X)$, where $u \perp v$, $u, v \in \mathbb{F}_{\leq 2}[X]$.
- ψ is 2-to-1: for most values t, the equation $\psi(x) = t$ has 0 or 2 solutions.
- **Theorem.** For any f, there exist f_0, f_1, such that
 \[f(X) = (f_0(\psi(X)) + X \cdot f_1(\psi(X))) \cdot v(X) \left\lceil \frac{\deg f}{2} - 1 \right\rceil \]

Pieces of FFTree

- $L_0 \xrightarrow{\psi_0} L_1 \xrightarrow{\psi_1} \ldots \xrightarrow{\psi_{k-1}} L_k$
- $|L_i| = 2^{k-i}$
- $\psi_i(X) = u_i(X)/v_i(X)$. Values in $v_i(L_i)$ have been precomputed.
- For each ψ_i: rule to go from polynomial f to polynomials f_0, f_1

Where to get these pieces?

Nov-Dec 2021 141
How to find big FFTrees?

- An elliptic curve E over \mathbb{F}: the set of points $(x, y) \in \mathbb{F}^2$ satisfying the equation
 - $y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$ for given $a_1, \ldots, a_6 \in \mathbb{F}$ (Weierstrass form)
 - $y^2 = x^3 + ax + b$ for given $a, b \in \mathbb{F}$ (short Weierstrass form)

- Group law for $E \cup \{\mathcal{O}\}$: $P + Q + R = \mathcal{O}$ iff P, Q, R are on the same straight line
 - \mathcal{O} — zero element, “point at infinity”

- Hasse’s theorem. $|E| \in [|\mathbb{F}| + 1 - 2\sqrt{|\mathbb{F}|}, |\mathbb{F}| + 1 + 2\sqrt{|\mathbb{F}|}]$
 - There exist fast algorithms for counting the number of points of E
 - Theorem (Deuring). If $|\mathbb{F}|$ is prime, then all values in this segment are achievable
 - It is not too difficult to find a curve with given size (for the sizes we care about)

- A pair of rational functions $\phi : E \rightarrow E'$ is isogeny, if it is a group homomorphism
 - If E is in Weierstrass form, then $\phi_1 : \mathbb{F} \rightarrow \mathbb{F}$
 - Given $H \leq E$, one can construct E' and $\phi : E \rightarrow E'$, such that $\ker \phi = H$
 - \ldots and degree of ϕ is $|H|$
Constructing big FFTrees

- Find elliptic curves and isogenies $E_0 \xrightarrow{\phi_0} E_1 \xrightarrow{\phi_1} \cdots \xrightarrow{\phi_{k-1}} E_k$
- Let $G_0 \leq E_0$ have size 2^k. $G_i := \phi_{i-1}(G_{i-1})$. $\ker \phi_i \leq G_i$. $|\ker \phi_i| = 2$
- Let G_0 have a coset C_0, such that all elements in $C_0 \subset E_0$ have different first coordinates
 - Coset of G_0: any subset of E_0 of the form \(\{ h + g \mid g \in G_0 \} \) for some fixed $h \in E_0$
- Define $C_i = \phi_{i-1}(C_{i-1})$
- Define L_i as the set of first coordinates of C_i.
- Define ψ_i as the first component of ϕ_i
Commitment to multilinear polynomials
Commitment to multilinear polynomials

- To commit to multilinear $f : \mathbb{F}^m \to \mathbb{F}$:
 - Pick $H \leq \mathbb{F}^*, |H| = 2^m$, and a bijection $\beta : H \to \{0, 1\}^m$
 - Commit to $q := f \circ \beta$ over H
- To evaluate $f(\vec{x})$ for $\vec{x} \in \mathbb{F}^m$:

 \[
 f(\vec{x}) = \sum_{a \in H} q(a) \cdot \chi_{\beta^{-1}(a)}(\vec{x})
 \]

 \[
 \chi_{\vec{w}}(\vec{x}) := \prod_{i=1}^{k} (w_i \cdot x_i : (1 - x_i))
 \]

Define $u_{\vec{x}} : \mathbb{F} \to \mathbb{F}$ as the polynomial (of degree $< 2^m$) satisfying

$\forall a \in H : u_{\vec{x}}(a) = \chi_{\beta^{-1}(a)}(\vec{x})$
Commitment to multilinear polynomials

To prove that $f(\vec{x}) = v$:

- Define (but don’t commit to)
 $$g(X) := q(X) \cdot u_{\vec{x}}(X) - v \cdot |H|^{-1},$$

 then $\sum_{a \in H} g(a) = 0$ iff $f(\vec{x}) = v$.

- Run the univariate Sum-Check protocol for g and H

- During the run, V may need to evaluate $q(r)$, $h(r)$ (from the univariate Sum-Check protocol), $u_{\vec{x}}(r)$
- q and h have been committed
- $u_{\vec{x}}(r)$ has to be interpolated from the values of $u_{\vec{x}}$ on H
 - The values of $u_{\vec{x}}$ on H also have to be computed
 - This is doable with a circuit of size $O(2^m)$, depth $O(m)$
 - Prover can help with the GKR protocol
Correcting the committed polynomials
Reed-Solomon codes

- Given: field \mathbb{F}, numbers $d, n \in \mathbb{N}$, $d \leq n$, (pairwise different) values $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$
- The Reed-Solomon code of block length n and message length d is the following set:
 $$\{(f(\alpha_1), \ldots, f(\alpha_n)) \mid r_0, \ldots, r_{d-1} \in \mathbb{F}, f(X) := r_0 + r_1 X + \cdots + r_{d-1} X^{d-1}\}$$
- **Berlekamp-Welch algorithm** — an efficient algorithm for error correction:
 - Given $\vec{c}' = (c'_1, \ldots, c'_n) \in \mathbb{F}$, such that
 - exists $\vec{c} = (c_1, \ldots, c_n)$ in the code, such that
 - \vec{c}' and \vec{c} differ at most $\lfloor (n - d)/2 \rfloor$ positions,
 - the algorithm returns \vec{c}
Decoding Reed-Solomon codes

- Suppose that the original codeword was \((s_1, \ldots, s_n)\), corresponding to the polynomial \(p\).
- But we received \((\tilde{s}_1, \ldots, \tilde{s}_n)\).
 - We assume it has at most \((n - d)/2\) errors.
- Find the coefficients for polynomials \(q_0\) and \(q_1\), such that
 - Degree of \(q_0\) is at most \((n + d - 2)/2\). Degree of \(q_1\) is at most \((n - d)/2\).
 - For all \(i \in \{1, \ldots, n\}\): \(q_0(c_i) - q_1(c_i) \cdot \tilde{s}_i = 0\).
 - \(q_0\) and \(q_1\) are not both equal to 0.
- Then \(p = q_0/q_1\).
- In general, there are more equations than variables, but \(\tilde{s}_i\) are not arbitrary.
Correctness of decoding

Such polynomials q_0, q_1 exist:

- $(s_1, \ldots, s_n), (\tilde{s}_1, \ldots, \tilde{s}_n)$ — original and received codewords. Let E be the set of i, where $s_i \neq \tilde{s}_i$. Then $|E| \leq (n - d)/2$.
- Let $k(x) = \prod_{i \in E}(x - c_i)$. Then $\deg k \leq (n - d)/2$.
- Take $q_1 = k$ and $q_0 = p \cdot k$. Then $\deg q_0 \leq (n + d - 2)/2$.
- For all $i \in \{1, \ldots, n\}$ we have

$$q_0(c_i) - q_1(c_i) \cdot \tilde{s}_i = k(c_i)(p(c_i) - \tilde{s}_i) = k(c_i)(s_i - \tilde{s}_i) = \begin{cases} k(c_i)(s_i - s_i) = 0, & i \notin E \\ 0 \cdot (s_i - \tilde{s}_i) = 0, & i \in E \end{cases}$$
Correctness of decoding

If q_0 and q_1 satisfy the equalities and upper bounds on degrees, then $p = q_0 / q_1$:

- Let $q'(x) = q_0(x) - q_1(x)p(x)$. Degree of q' is at most $(n + d - 2)/2$.
- For each $i \notin E$, $q'(c_i) = q_0(c_i) - q_1(c_i)p(c_i) = q_0(c_i) - q_1(c_i)\tilde{s}_i = 0$.
 - $1 \leq i \leq n$.
- The number of such i is at least $n - (n - d)/2 = (n + d)/2$.
- Thus the number of roots of q' is larger than its degree. Hence $q' = 0$.
- $q_0 - q_1 \cdot p = 0$.
Correcting polynomials (1/2)

The task
- Given
 - Field \(\mathbb{F} \), numbers \(d, m \in \mathbb{N} \), rate \(\delta \in (1/2, 1] \), unknown polynomial \(f : \mathbb{F}^m \rightarrow \mathbb{F} \) with \(\deg f \leq d \)
 - Access to oracle \(f^* : \mathbb{F}^m \rightarrow \mathbb{F} \), that agrees with \(f \) on at least \(\delta \) fraction of \(\mathbb{F}^m \)
 - A point \(\vec{x} \in \mathbb{F}^m \) (Also known to whoever prepared \(f^* \))
- Compute \(f(\vec{x}) \)

Solution idea
- Randomly sample \(\vec{r} \in \mathbb{F}^m \), define the line \(\ell(X) := \vec{x} + X \cdot \vec{r} \)
- Sample \(f^* \circ \ell \) at sufficiently many points, run error correction

Exercise. Why doesn’t this idea work?
Correcting polynomials (2/2)

An idea that works

- Randomly sample $\vec{r}_1, \vec{r}_2 \in \mathbb{F}^m$, define the parabola $\ell(X) := \vec{x} + X \cdot \vec{r}_1 + X^2 \cdot \vec{r}_2$
- Sample $f^* \circ \ell$ at sufficiently many points, run error correction
 - The degree of $f \circ \ell$ would be $2d$
 - The probability of error on a randomly sampled location of ℓ is not much higher than $(1 - \delta)$

Theorem

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$. Let $I = \{i \in \{1, \ldots, n\} \mid f^*(\ell(i)) = f(\ell(i))\}$. Then

$$\Pr_{\vec{r}_1, \vec{r}_2}[|I| \leq \delta(n - c\sqrt{n})] \leq 1/c^2$$

for any positive number c
Proof of the theorem

- For any $\vec{x} \in \mathbb{F}^m$ let $I(x) \in \{0, 1\}$ indicate whether $f^*(\vec{x}) = f(\vec{x})$

- Let A_1, \ldots, A_n be random variables, where $A_i = I(\ell(\alpha_i))$
 - A_i are pairwise independent, because so are the random points $\ell(\alpha_i)$

- Let $B = A_1 + \cdots + A_n$. Find its average $\mathbb{E}[B]$ and variance $\mathbb{V}[B] = \mathbb{E}[(B - \mathbb{E}[B])^2]$:

\[
\mathbb{E}[B] = \mathbb{E}[A_1 + \cdots + A_n] = \mathbb{E}[A_1] + \cdots + \mathbb{E}[A_n] = \delta n
\]

\[
\mathbb{V}[B] = \mathbb{V}[A_1] + \cdots + \mathbb{V}[A_n] + \sum_{i \neq j} \text{Cov}[A_i, A_j] = n\delta(1 - \delta) \leq n\delta^2
\]

Chebyshev inequality: $\Pr[|B - \mathbb{E}[B]| > c\sqrt{\mathbb{V}[B]}] < 1/c^2$. If $B \leq \mathbb{E}[B]$, then $\delta n - |I| > c\delta \sqrt{n}$ i.e. $|I| < \delta(n - c\sqrt{n})$
Polynomial commitments from the hardness of Discrete Logarithm
First example

- Let P have $f : \mathbb{Z}_p \rightarrow \mathbb{Z}_p$, $f(X) = \sum_{i=0}^{d} a_i X^i$
- Let G, g, h be the set-up for Pedersen’s commitments
- $P \rightarrow V : c_0, \ldots, c_d$, where $c_i = g^{a_i} h^{r_i}$ for $r_i \leftarrow \mathbb{Z}_p$
 - Same size, as the whole f, but gives privacy
- To compute a commitment to $f(x)$, V computes $\prod_{i=0}^{d} c_i^{x^i}$
 - P is able to open it, if necessary
- This generalizes to certain classes of multivariate polynomials
 - dense polynomials in this class must not have too many coefficients
Commitments to vectors

Pedersen commitments

- Group \mathbb{G}, size p, elements $g, h \in \mathbb{G}$ with unknown $\log_g h$
- $\text{Com}(x; r) = g^x h^r$
- To open, give x and r

Pedersen vector commitments

- Commitments to elements of \mathbb{Z}_p^n
- Elements $g_1, \ldots, g_n, h \in \mathbb{G}$ with no known non-trivial discrete log relations
- $\text{Com}(x_1, \ldots, x_n; r) = g_1^{x_1} \cdots g_n^{x_n} h^r$
- Opening: give x_1, \ldots, x_n, r
- Homomorphic (for operations on vectors)
Discrete Log Relations

Fix n. Suppose that we have a machine O that takes n elements of G and outputs n elements of \mathbb{Z}_p, such that

$$
\Pr \left[\frac{g_1^{x_1} \cdots g_n^{x_n}}{\exists i : x_i \neq 0} = 1 \bigg| \begin{array}{c}
g_1, \ldots, g_n \leftarrow G \\
(x_1, \ldots, x_n) \leftarrow O(g_1, \ldots, g_n)
\end{array} \right] \text{ is non-negligible, where probabilities are over the choice of } g_1, \ldots, g_n \text{ and the randomness used by } O
$$

Exercise. You are given some $g, h \in G$. You have access to O. Find $\log_g h$
Solution to exercise

- Generate random $r_1, \ldots, r_n, s_1, \ldots, s_n \overset{\$}{\leftarrow} \mathbb{Z}_p$
- Call $(x_1, \ldots, x_n) \leftarrow \mathcal{O}(g^{r_1 h^{s_1}}, g^{r_2 h^{s_2}}, \ldots, g^{r_n h^{s_n}})$
 - Inputs are uniformly random elements of \mathbb{G}
 - Hence the output is a non-trivial DL relation (with non-negligible probability)
- Denote $z = \log g h$. Then $\sum_{i=1}^{n} x_i (r_i + z s_i) = 0$. Find:
 \[
 \log g h = z = -\left(\sum_{i=1}^{n} x_i r_i\right) / \left(\sum_{i=1}^{n} x_i s_i\right)
 \]
- This fails only if the denominator is 0
- But the inputs to \mathcal{O} are independent of s_1, \ldots, s_n
- Hence the denominator is a random linear combination of x_1, \ldots, x_n
Committing to the vector of coefficients

- Let \(g_1, \ldots, g_n, h \) be fixed. Let \(P \) commit to \(\vec{u} \in \mathbb{Z}_p^n \) by \(c_u \leftarrow h^{r_u} \cdot \prod_{i=1}^{n} g_i^{u_i} \)
- Later, we get a public vector \(\vec{y} \in \mathbb{Z}_p^n \). \(P \) computes \(v = \langle \vec{u}, \vec{y} \rangle \) and \(c_v \leftarrow h^{r_v} g_1^v \)
- \(V \) has \(c_u, c_v, \vec{y} \). \(P \) wants to prove that \(v = \langle \vec{u}, \vec{y} \rangle \)

Protocol — similar to knowledge of a DL

- \(P \) samples \(\vec{s} \in \mathbb{Z}_p^n, r_1, r_2 \in \mathbb{Z}_p \), sends \((\alpha_1, \alpha_2) = \left(h^{r_1} \prod_{i=1}^{n} g_i^{s_i}, h^{r_2} g_1^{\langle \vec{s}, \vec{y} \rangle} \right) \) to \(V \)
- \(V \) samples and sends a challenge \(\beta \in \mathbb{Z}_p \)
- \(P \) sends \((\vec{\gamma}_1, \gamma_2, \gamma_3) = (\beta \vec{u} + \vec{s}, \beta r_u + r_1, \beta r_v + r_2) \)
- \(V \) checks that \(c_u^\beta \cdot \alpha_1 = h^{\gamma_2} \prod_{i=1}^{n} g_i^{\gamma_{1,i}} \) and \(c_v^\beta \cdot \alpha_2 = h^{\gamma_3} g_1^{\langle \vec{\gamma}_1, \vec{y} \rangle} \)

Hence, commitments are short. Unfortunately, \(\vec{\gamma}_1 \) is long
Trad-off: square-root lengths

Hadamard product

Let \vec{u} and \vec{v} be two vectors over \mathbb{F}, with length m and n. Their Hadamard product is $\vec{u} \otimes \vec{v} := (u_i v_j)_{i,j=1,1}^{m,n}$ (a vector of length mn)

Note that $(1, r, r^2, \ldots, r^{mn-1}) = (1, r, r^2, \ldots, r^{n-1}) \otimes (1, r^n, r^{2n}, \ldots, r^{(m-1)n})$

P knows $\vec{u} \in \mathbb{Z}_p^{n^2}$. Creates n commitments: $c_{u,j} \leftarrow h^{r_{u,j}} \cdot \prod_{i=1}^{n} g_i^{u_i + n \cdot j}$

Later, there are public $\vec{y}, \vec{z} \in \mathbb{Z}_p^n$. P computes $v = \langle \vec{u}, (\vec{y} \otimes \vec{z}) \rangle$ and $c_v \leftarrow h^{r_v} g_1^v$

V can compute $\hat{c} \leftarrow \prod_{j=1}^{n} c_{u,j}^{y_j} = h^{\sum_{j=1}^{n} r_{u,j} y_i} \cdot \prod_{i=1}^{n} g_i^{\sum_{j=1}^{n} u_i + n \cdot j \cdot y_j}$ himself

P and V use the previous protocol on c_v and \hat{c} to show that

$$c_v \text{ stores } \sum_{i=1}^{n} \left(\sum_{j=1}^{n} u_{i+n \cdot j} y_j \right) \cdot z_i = \langle \vec{u}, (\vec{y} \otimes \vec{z}) \rangle$$
A dense multilinear polynomial with n variables has 2^n monomials

Or it is a linear combination of 2^n Lagrange basis polynomials

$$\chi_{\vec{w}}(\vec{X}) = (\prod_{i:w_i=1} X_i) \cdot (\prod_{i:w_i=0} (1 - X_i))$$

The list of either of them can be represented as Hadamard product of two $2^{n/2}$-length vectors

- Everything involving first $n/2$ variables only vs. everything involving last $n/2$ variables only

The construction on previous slide will work
Bilinear pairings
Bilinear pairings

- G_1, G_2, G_T — three cyclic groups of size $p \in \mathbb{P}$, with hard DLP
 - let g generate G_1 and h generate G_2

Definition

$\hat{e} : G_1 \times G_2 \rightarrow G_T$ is a (non-degenerate) **bilinear pairing**, if

- $\hat{e}(g_1 g_2, h_1) = \hat{e}(g_1, h_1) \cdot \hat{e}(g_2, h_1)$ and $\hat{e}(g_1, h_1 h_2) = \hat{e}(g_1, h_1) \cdot \hat{e}(g_1, h_2)$
- $\hat{e}(g, h) \neq 1$, i.e. $\hat{e}(g, h)$ generates G_T

Hence

$$\hat{e}(g^x, h^y) = \hat{e}(g, h)^{xy}$$
Recall: exponential ElGamal

- A group \mathbb{G} of size p with generator g
- Secret key: $sk \in \mathbb{Z}_p$. Public key: $G = g^{sk}$
- Encrypting $m \in \mathbb{Z}_p$:
 - Generate $r \in \mathbb{Z}_p$
 - Output $(c_1, c_2) = (g^r, g^m G^r)$
- Decryption: let $g' = c_2/c_1^{sk}$, brute-force to find $m = \log_g g'$

Additively homomorphic

$$\mathcal{E}(m_1; r_1) \cdot \mathcal{E}(m_2; r_2) = \mathcal{E}(m_1 + m_2; r_1 + r_2)$$

(multiplication is componentwise)
The use of pairings

- We are “committing” to values in exponents:
 \[g^x, h^y, \ldots \]
- We can do linear combinations with the committed values.
- Pairing allows us to do one multiplication with them.
- Getting an encryption scheme out of here takes some extra work.
Boneh-Goh-Nissim cryptosystem

- Cyclic groups $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ of size $n = pq$, secret factorization
- Public key: elements $G \in \mathbb{G}_1$, $H \in \mathbb{G}_2$ of order q
- Encryption of $m \in \mathbb{Z}_p$: $g^m G^r \in \mathbb{G}_1$ or $h^m H^r \in \mathbb{G}_2$
- Decryption of $c \in \mathbb{G}_1$: Compute $c' = c^q = g^{qm}$. Find $\log_{g^q} c'$
 - Same in \mathbb{G}_2
- Homomorphic addition: yes
- Homomorphic multiplication:

 $$\hat{e}(g^{m_1} G^{r_1}, h^{m_2} H^{r_2}) = \hat{e}(g, h)^{m_1 m_2} \underbrace{\hat{e}(g, H)^{m_1 r_2} \hat{e}(G, h)^{r_1 m_2} \hat{e}(G, H)^{r_1 r_2}}_{\text{order } q}$$

 I.e. when decrypting, we get $\hat{e}(g, h)^{qm_1 m_2}$ and have to find its discrete log. to the base $\hat{e}(g, h)^q$
Typical security properties

Bilinear Diffie-Hellman (for \(\mathbb{G}_1 = \mathbb{G}_2 \))

Given \(g^a, g^b, g^c \), find \(\hat{e}(g, g)^{abc} \)

Bilinear Decisional Diffie-Hellman (for \(\mathbb{G}_1 = \mathbb{G}_2 \))

Distinguish \((g^a, g^b, g^c, \hat{e}(g, g)^{abc}) \) from \((g^a, g^b, g^c, \hat{e}(g, g)^r) \)

- Recent number-theoretic advances have obsoleted all instances of pairings, where \(\mathbb{G}_1 = \mathbb{G}_2 \)
 - These instances were called **symmetric**
- For asymmetric instances, some elements in these assumptions come from \(\mathbb{G}_1 \), and some from \(\mathbb{G}_2 \)
Where do the groups come from?

- G_1 is some elliptic curve group $E(\mathbb{F}_q)$
 - q is the power of some prime. $p \approx q$
 - $E \equiv y^2 = x^3 + ax + b. a, b \in \mathbb{F}_q$
- G_2 is a subgroup of $E(\mathbb{F}_q^k)$. G_T is a subgroup of \mathbb{F}_q^*
 - The same E
 - The embedding degree k is such, that p divides $q^k - 1$
 - k could be e.g. 12
- Computations in G_1 are cheaper than in G_2 or G_T
- Not every combination of p, q, k works
 - Different design choices than for “usual” ECC

https://medium.com/@VitalikButerin/exploring-elliptic-curve-pairings-c73c1864e627
Generic group model (GGM)

- Access the elements of the group only through handles
- Have an API for performing group operations

The functionality $\mathcal{F}_{\text{gengroup}}^p$, $p \in \mathbb{P}$

- Internal state: $S \subseteq \mathbb{Z}_p \times \{0, 1\}^*$, initially $\{(0, 00 \cdots 0)\}$
 - Injective in both directions
- On input “$\text{op}(w_1, \ldots, w_k)$”, where “$\text{op}$” is “mult” or “inv”:
 - Look up $e_i = S^{-1}(w_i)$
 - If “op” is “mult”, then put $r = \sum_i e_i$. If “op” is “inv”, then put $r = -e_1$
 - Return $S(r)$
- If $S(e)$ or $S^{-1}(w)$ is undefined, then
 - randomly pick $e \leftarrow \mathbb{Z}_p$ or $w \leftarrow \{0, 1\}^*$, avoiding collisions
 - Insert (e, r) into S
DL is hard in the generic group

- Attacker A is given $g, h \in \{0, 1\}^*$
- Random $e_g = S^{-1}(g)$ and $e_h = S^{-1}(h)$ get defined by $\mathcal{F}_\text{gengroup}$
- We want to find $X = e_h/e_g$. Assume w.l.o.g. that $e_g = 1$.

DL is hard in the generic group

- Attacker A is given $g, h \in \{0, 1\}^*$
- Random $e_g = S^{-1}(g)$ and $e_h = S^{-1}(h)$ get defined by $\mathcal{F}^p_{\text{gengroup}}$
- We want to find $X = e_h/e_g$. Assume w.l.o.g. that $e_g = 1$.
- A queries $\mathcal{F}^p_{\text{gengroup}}$ (n times). To each argument and answer, we can assign a linear polynomial in $\mathbb{Z}_p[X,Y_1,Y_2,\ldots]$:
 - $g \mapsto 1$, $h \mapsto X$
 - If $k_1 \mapsto f_1$ and $k_2 \mapsto f_2$, then $\text{mult}(k_1,k_2) \mapsto f_1 + f_2$
 - If $k \mapsto f$, then $\text{inv}(k) \mapsto -f$
 - If A submits a new k to $\mathcal{F}^p_{\text{gengroup}}$, then $k \mapsto Y_i$, where Y_i is new

There has to be a collision: if $k \mapsto f_1$ and $k \mapsto f_2$, then $f_1 - f_2 = 0$ at X. For given f_1, f_2, and a random X, this happens with probability $1/p$. There are $O(n^2)$ possible pairs f_1, f_2. Nov-Dec 2021
DL is hard in the generic group

- Attacker \mathcal{A} is given $g, h \in \{0, 1\}^*$
- Random $e_g = S^{-1}(g)$ and $e_h = S^{-1}(h)$ get defined by $\mathcal{F}_{\text{gengroup}}^p$
- We want to find $X = e_h/e_g$. Assume w.l.o.g. that $e_g = 1$.
- \mathcal{A} queries $\mathcal{F}_{\text{gengroup}}^p$ (n times). To each argument and answer, we can assign a linear polynomial in $\mathbb{Z}_p[X, Y_1, Y_2, \ldots]$
 - $g \mapsto 1$. $h \mapsto X$
 - If $k_1 \mapsto f_1$ and $k_2 \mapsto f_2$, then $\text{mult}(k_1, k_2) \mapsto f_1 + f_2$
 - If $k \mapsto f$ then $\text{inv}(k) \mapsto -f$
 - If \mathcal{A} submits a new k to $\mathcal{F}_{\text{gengroup}}^p$, then $k \mapsto Y_i$, where Y_i is new
- To find X, \mathcal{A} need a non-trivial equation containing it
 - There has to be a collision: $k \mapsto f_1$ and $k \mapsto f_2$
 - I.e. the linear polynomial $f_1 - f_2$ is 0 at X
 - For given f_1, f_2, and a random X, this happens with probability $1/p$
 - There are $O(n^2)$ possible pairs f_1, f_2
DDH is hard in a generic group

- Given random g, g^A, g^B, g^C, g^D with either $C = AB$ or $D = AB$
- A must figure out, whether $C = AB$ or $D = AB$
DDH is hard in a generic group

- Given random g, g^A, g^B, g^C, g^D with either $C = AB$ or $D = AB$
- A must figure out, whether $C = AB$ or $D = AB$
- We get linear polynomials $f_i \in \mathbb{Z}_p[A, B, C, D, ...]$
- A “wins”, if exist $i \neq j$, such that
 - $f_i(x, y, xy, z) = f_j(x, y, xy, z)$, or
 - $f_i(x, y, z, xy) = f_j(x, y, z, xy)$
- Each equality happens with probability $\leq 2/p$
 - Two equalities per pair (i, j). Number of pairs: $O(n^2)$
- If A “wins”, then it can make an informed choice. Otherwise it just guesses randomly
Generic bilinear group model (GBGM)

- Same as GGM, except that
 - Internal state has three partial functions S_1, S_2, S_T
 - There are operations mult_i and inv_i for $i \in \{1, 2, T\}$
 - There is an operation “pair”

\[
\text{pair}(g, h) = S_T(S_1^{-1}(g) \cdot S_2^{-1}(h))
\]
Polynomial commitments from pairings
A binding scheme

- There’s a CRS: $g, g^\tau, g^{\tau^2}, \ldots, g^{\tau^d}, h, h^\tau$ for committing to polynomials of degree at most d
 - $\tau \overset{\$}{\leftarrow} \mathbb{Z}_p$ is random, must be remain hidden
- Commitment to $f : \mathbb{Z}_p \to \mathbb{Z}_p$: the value $c = g^{f(\tau)}$
- To open as $f(x) = y$:
 - P computes $w(X) = (f(X) - y)/(X - x)$, sends $q = g^{w(\tau)}$ to V
 - V checks: $\hat{e}(c \cdot g^{-y}, h) \overset{?}{=} \hat{e}(q, h^{\tau} \cdot h^{-x})$
A binding scheme

- There’s a CRS: \(g, g^{\tau}, g^{\tau^2}, \ldots, g^{\tau^d}, h, h^{\tau} \) for committing to polynomials of degree at most \(d \)
 - \(\tau \xleftarrow{\$} \mathbb{Z}_p \) is random, must be remain hidden

- Commitment to \(f : \mathbb{Z}_p \rightarrow \mathbb{Z}_p \): the value \(c = g^{f(\tau)} \)

- To open as \(f(x) = y \):
 - \(P \) computes \(w(X) = (f(X) - y)/(X - x) \), sends \(q = g^{w(\tau)} \) to \(V \)
 - \(V \) checks: \(\hat{e}(c \cdot g^{-y}, h) \overset{?}{=} \hat{e}(q, h^{\tau} \cdot h^{-x}) \)

- I.e. \(V \) checks whether \(f(\tau) - y = w(\tau)(\tau - x) \)
 - Checks the polynomial equation above at the random point \(\tau \)

- Note that \(V \) does not need the whole CRS, but only \(h, h^{\tau} \)

Exercise. Make the scheme hiding, too. Use Pedersen’s commitments
Binding

d-strong Diffie-Hellman (d-SDH) assumption

Given $g, g^\tau, g^{\tau^2}, \ldots, g^{\tau^d}$, the attacker cannot output $(c, g^{1/(\tau-c)}) \in \mathbb{Z}_p \times \mathbb{G}_1$

- Suppose prover can open $f(x)$ as y and as y'. I.e. he knows $q, q' \in \mathbb{G}_1$, such that
 \[
 \hat{e}(c \cdot g^{-y}, h) = \hat{e}(q, h^\tau \cdot h^{-x}) \quad \text{and} \quad \hat{e}(c \cdot g^{-y'}, h) = \hat{e}(q', h^\tau \cdot h^{-x})
 \]
 \[
 \log_g(c) - y = (\log_g q) \cdot (\tau - x) \quad \text{and} \quad (\log_g c) - y' = (\log_g q') \cdot (\tau - x)
 \]
 \[
 \log_g(q) \cdot (\tau - x) + y = (\log_g q') \cdot (\tau - x) + y'
 \]

 \[
 ((\log_g q) - (\log_g q')) \cdot (\tau - x) = y' - y
 \]

 \[
 (q/q')^{\tau-x} = g^{y'-y}
 \]

 \[
 (q/q')^{1/(y'-y)} = g^{1/(\tau-x)}
 \]
Bulletproofs
Inner product argument

- Cyclic group \mathbb{G} of size $p \in \mathbb{P}$
- Public elements $g_1, \ldots, g_n, h_1, \ldots, h_n, P \in \mathbb{G}$, $c \in \mathbb{Z}_p$
 - $g_1, \ldots, g_n, h_1, \ldots, h_n$ come from the CRS
 - No known non-trivial discrete log relations among all g_i, h_i
- P wants to convince V that he knows $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}_p$, such that
 $$\prod_{i=1}^{n} g_i^{a_i} h_i^{b_i} = P \quad \text{and} \quad \sum_{i=1}^{n} a_i b_i = c$$
- Privacy is not important
- Can we be more efficient than P just sending over all a_i, b_i?
Modified inner product argument

- Public elements $g_1, \ldots, g_n, h_1, \ldots, h_n, P, u \in \mathbb{G}$
 - $g_1, \ldots, g_n, h_1, \ldots, h_n, u$ come from the CRS
 - No known non-trivial discrete log relations among u and all g_i, h_i

- P wants to convince V that he knows $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}_p$, such that

$$u \sum_{i=1}^{n} a_i b_i \cdot \prod_{i=1}^{n} g_i^{a_i} h_i^{b_i} = P$$

- Privacy is still not important
Reduction from modified to original argument

To make the original argument:

- V picks random $u \in G$, sends it to P;
- Run the modified protocol with
 \[
 P \leftarrow P_{\text{orig}} \cdot u_{\text{orig}}
 \]
 \[
 \ldots \text{using the same } \vec{a}, \vec{b}
 \]
Soundness

- Run the modified protocol twice, with $u_1 = g^{x(1)}$ and $u_2 = g^{x(2)}$, for some $g \in \mathbb{G}$.
- Extract the witnesses $\vec{a}(1)$, $\vec{b}(1)$, $\vec{a}(2)$, $\vec{b}(2)$. They satisfy

 $$\sum_{i=1}^{n} a_{i}^{(1)} b_{i}^{(1)} \prod_{i=1}^{n} g_{i}^{a_{i}^{(1)} h_{i}^{b_{i}^{(1)}}} = P_{\text{orig}} \cdot g^{x(1)c_{\text{orig}}}$$
 $$\sum_{i=1}^{n} a_{i}^{(2)} b_{i}^{(2)} \prod_{i=1}^{n} g_{i}^{a_{i}^{(2)} h_{i}^{b_{i}^{(2)}}} = P_{\text{orig}} \cdot g^{x(2)c_{\text{orig}}}$$

Hence $\vec{a}(1) = \vec{a}(2)$ and $\vec{b}(1) = \vec{b}(2)$. Otherwise, we have a non-trivial DL relation $\sum_{i=1}^{n} a_{i}^{(1)} b_{i}^{(1)} = c_{\text{orig}}$. The original equation now also gives $\vec{a}(1)$ and $\vec{b}(1)$.
Soundness

- Run the modified protocol twice, with $u_1 = g^{x(1)}$ and $u_2 = g^{x(2)}$, for some $g \in \mathbb{G}$.
- Extract the witnesses $\vec{a}(1)$, $\vec{b}(1)$, $\vec{a}(2)$, $\vec{b}(2)$. They satisfy

$$g^{x(1)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(1)} b_i^{(1)}) \prod_{i=1}^{n} g_i^{a_i^{(1)}} h_i^{b_i^{(1)}} = P_{\text{orig}} \quad g^{x(2)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(2)} b_i^{(2)}) \prod_{i=1}^{n} g_i^{a_i^{(2)}} h_i^{b_i^{(2)}} = P_{\text{orig}}$$

Hence $\vec{a}(1)$ = $\vec{a}(2)$ and $\vec{b}(1)$ = $\vec{b}(2)$. Otherwise, we have a non-trivial DL relation

$$\sum_{i=1}^{n} a_i^{(1)} b_i^{(1)} = c_{\text{orig}}.$$
Soundness

- Run the modified protocol twice, with $u_1 = g^{x(1)}$ and $u_2 = g^{x(2)}$, for some $g \in \mathbb{G}$.
- Extract the witnesses $\vec{a}^{(1)}$, $\vec{b}^{(1)}$, $\vec{a}^{(2)}$, $\vec{b}^{(2)}$. They satisfy

$$g^{x(1)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(1)} b_i^{(1)}) - x^{(2)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(2)} b_i^{(2)}) \cdot \prod_{i=1}^{n} g_i^{a_i^{(1)} - a_i^{(2)}} h_i^{b_i^{(1)} - b_i^{(2)}} = 1$$

Hence $\vec{a}^{(1)} = \vec{a}^{(2)}$ and $\vec{b}^{(1)} = \vec{b}^{(2)}$. Otherwise, we have a non-trivial DL relation.
Soundness

- Run the modified protocol twice, with \(u_1 = g^{x(1)} \) and \(u_2 = g^{x(2)} \), for some \(g \in \mathbb{G} \).
- Extract the witnesses \(\vec{a}^{(1)}, \vec{b}^{(1)}, \vec{a}^{(2)}, \vec{b}^{(2)} \). They satisfy

\[
g^{x(1)} (-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(1)} b_i^{(1)}) - x^{(2)} (-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(2)} b_i^{(2)}) \cdot \prod_{i=1}^{n} g_i a_i^{(1)} - a_i^{(2)} h_i^{(1)} - b_i^{(2)} = 1
\]

- Hence \(\vec{a}^{(1)} = \vec{a}^{(2)} \) and \(\vec{b}^{(1)} = \vec{b}^{(2)} \). Otherwise, we have a non-trivial DL relation
Soundness

- Run the modified protocol twice, with $u_1 = g^{x(1)}$ and $u_2 = g^{x(2)}$, for some $g \in \mathbb{G}$.
- Extract the witnesses $\vec{a}^{(1)}$, $\vec{b}^{(1)}$, $\vec{a}^{(2)}$, $\vec{b}^{(2)}$. They satisfy

$$g^{x(1)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(1)} b_i^{(1)}) - x^{(2)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(2)} b_i^{(2)}) \cdot \prod_{i=1}^{n} g_i^{a_i^{(1)} - a_i^{(2)}} h_i^{b_i^{(1)} - b_i^{(2)}} = 1$$

- Hence $\vec{a}^{(1)} = \vec{a}^{(2)}$ and $\vec{b}^{(1)} = \vec{b}^{(2)}$. Otherwise, we have a non-trivial DL relation

$$g^{x(1)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(1)} b_i^{(1)}) - x^{(2)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(1)} b_i^{(1)}) = 1$$
Soundness

- Run the modified protocol twice, with $u_1 = g^{x(1)}$ and $u_2 = g^{x(2)}$, for some $g \in \mathbb{G}$.
- Extract the witnesses $\vec{a}(1), \vec{b}(1), \vec{a}(2), \vec{b}(2)$. They satisfy

$$g^{x(1)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(1)} b_i^{(1)}) - x^{(2)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(2)} b_i^{(2)}) \cdot \prod_{i=1}^{n} g_i^{a_i^{(1)} - a_i^{(2)}} h_i^{b_i^{(1)} - b_i^{(2)}} = 1$$

- Hence $\vec{a}(1) = \vec{a}(2)$ and $\vec{b}(1) = \vec{b}(2)$. Otherwise, we have a non-trivial DL relation

$$(x^{(1)} - x^{(2)})(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(1)} b_i^{(1)}) = 0$$
Soundness

Run the modified protocol twice, with $u_1 = g^{x(1)}$ and $u_2 = g^{x(2)}$, for some $g \in \mathbb{G}$.

Extract the witnesses $\vec{a}(1)$, $\vec{b}(1)$, $\vec{a}(2)$, $\vec{b}(2)$. They satisfy

$$g^{x(1)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(1)} b_i^{(1)}) - x^{(2)}(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(2)} b_i^{(2)}) \cdot \prod_{i=1}^{n} g_i^{a_i^{(1)} - a_i^{(2)}} h_i^{b_i^{(1)} - b_i^{(2)}} = 1$$

Hence $\vec{a}(1) = \vec{a}(2)$ and $\vec{b}(1) = \vec{b}(2)$. Otherwise, we have a non-trivial DL relation

$$(x^{(1)} - x^{(2)})(-c_{\text{orig}} + \sum_{i=1}^{n} a_i^{(1)} b_i^{(1)}) = 0$$

Hence $\sum_{i=1}^{n} a_i^{(1)} b_i^{(1)} = c_{\text{orig}}$. The original equation now also gives

$$\prod_{i=1}^{n} g_i^{a_i^{(1)}} h_i^{b_i^{(1)}} = P_{\text{orig}}$$
Modified inner product argument (again)

- Public elements $g_1, \ldots, g_n, h_1, \ldots, h_n, P, u \in \mathbb{G}$
 - $g_1, \ldots, g_n, h_1, \ldots, h_n, u$ come from the CRS
 - No known non-trivial discrete log relations among u and all g_i, h_i

- P wants to convince V that he knows $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}_p$, such that
 $$u \sum_{i=1}^n a_i b_i \cdot \prod_{i=1}^n g_i^{a_i} h_i^{b_i} = P$$

- Privacy is still not important
The protocol

- Let $m = n/2$. P computes and sends to V:

 \[L = u \sum_{i=1}^{m} a_i b_{i+m} \cdot \prod_{i=1}^{m} g_{i+m}^{a_i} h_i^{b_{i+m}} \]

 \[R = u \sum_{i=1}^{m} a_{i+m} b_i \cdot \prod_{i=1}^{m} g_i^{a_{i+m}} h_{i+m}^{b_i} \]

- V sends random challenge $x \leftarrow \mathbb{Z}_p$

- P sends $a'_i = x a_i + x^{-1} a_{i+m}$ and $b'_i = x^{-1} b_i + x b_{i+m}$ to V ($1 \leq i \leq m$)

- V checks

 \[L x^2 \text{PR} x^{-2} \overset{?}{=} u \sum_{i=1}^{m} a'_i b'_i \cdot \prod_{i=1}^{m} g_i^{x^{-1} a'_i} g_{i+m}^{x a'_i} h_i^{x b'_i} h_{i+m}^{x^{-1} b'_i} \]
Correctness

\[L^2 PR^{x^{-2}} = u\sum_{i=1}^{m} a_i b_i + m x^2 \cdot \prod_{i=1}^{m} g_i^{a_i x^2} h_i^{b_i + m x^2} \times \]

\[u\sum_{i=1}^{m} (a_i b_i + a_i + m b_i + m) \cdot \prod_{i=1}^{m} g_i^{a_i} g_i^{a_i + m} h_i^{b_i} h_i^{b_i + m} \cdot u\sum_{i=1}^{m} a_i + m b_i x^{-2} \cdot \prod_{i=1}^{m} g_i^{a_i + m x^{-2}} h_i^{b_i x^{-2}} = \]

\[u\sum_{i=1}^{m} (a_i x + a_i + m x^{-1})(b_i x^{-1} + b_i + m x) \cdot \prod_{i=1}^{m} g_i^{a_i + a_i + m x^{-2}} g_i^{a_i x^2 + a_i + m} h_i^{b_i + b_i + m x^2} h_i^{b_i x^{-2} + b_i + m} = \]

\[u\sum_{i=1}^{m} a'_i b'_i \cdot \prod_{i=1}^{m} g_i^{x^{-1} a'_i} g_i^{a_i} h_i^{b_i} h_i^{b_i + x b'_i} h_i^{x^{-1} b'_i} \]

Because \(a'_i = a_i x + a_i + m x^{-1} \), \(b'_i = b_i x^{-1} + b_i + m x \), \(P = u\sum_{j=1}^{n} a_j b_j \cdot \prod_{j=1}^{n} g_j^{a_j} h_j^{b_j} \)
Recursion

- P has to convince V that he knows a'_i, b'_i, such that

$$L^{x^2} PR^{x^{-2}} \overset{?}{=} u \sum_{i=1}^{m} a'_i b'_i \prod_{i=1}^{m} g_i^{x-1} a'_i g_{i+m} x a'_i x b'_i x^{-1} b'_i$$

$$= u \sum_{i=1}^{m} a'_i b'_i \prod_{i=1}^{m} (g_i^{x-1} g_{i+m}) a'_i (h_i^{x} h_{i+m}^{-1}) b'_i$$

- The same inner product argument, same u, changed P, new g_i, h_i, halved n

- Do $\log n$ steps:
 - P sends two elements of \mathbb{G} at each step
 - V sends an element of \mathbb{Z}_p (except for the last step)
 - After the last step, V does all verifications (the computations can be optimized)
Soundness

- Get a forked transcript
 \[L, R, x_I, \vec{a}'_I, \vec{b}'_I, x_{II}, \vec{a}'_{II}, \vec{b}'_{II}, x_{III}, \vec{a}'_{III}, \vec{b}'_{III}, x_{IV}, \vec{a}'_{IV}, \vec{b}'_{IV} \]

 where \(x_I^2, x_{II}^2, x_{III}^2, x_{IV}^2 \) are all different

- They satisfy (for \(q \in \{I, II, III, IV\} \))
 \[
 L^2 x_q^2 \prod_{i=1}^m x_q^{-2} = u \sum_{i=1}^m a'_{q,i} b'_{q,i} \prod_{i=1}^m \left(\frac{x_q^{-1}}{g_i} \frac{x_q}{g_{i+m}} \right)^{a'_{q,i}} \left(\frac{h_i}{h_{i+m}} \frac{x_q^{-1}}{h_i} \right)^{b'_{q,i}}
 \]

- Let \(\nu_I, \nu_{II}, \nu_{III} \) satisfy
 \[
 \sum_{q=1}^{III} \nu_q x_q^2 = 1 \quad \sum_{q=1}^{III} \nu_q = 0 \quad \sum_{q=1}^{III} \nu_q x_q^{-2} = 0
 \]
Linear combination gives...

\[
L = \prod_{q=1}^{III} L^{\nu_q x_q^2} P^{\nu_q R} L^{\nu_q x_q^{-2}}
\]

\[
= \prod_{q=1}^{III} \left(\sum_{i=1}^{m} a'_{q,i} b'_{q,i} \cdot \prod_{i=1}^{m} \left(g_i x_q^{-1} g_{i+m} \right)^{a'_{q,i}} \left(h_i x_q^{-1} h_{i+m} \right)^{b'_{q,i}} \right)^{\nu_q}
\]

\[
= \sum_{q=1}^{III} \sum_{i=1}^{m} \nu_q a'_{q,i} b'_{q,i}
\]

\[
\times \prod_{i=1}^{m} g_i \sum_{q=1}^{III} \nu_q x_q^{-1} a'_{q,i} h_i \sum_{q=1}^{III} \nu_q x_q b'_{q,i} \prod_{i=1}^{m} g_{i+m} \sum_{q=1}^{III} \nu_q x_q^{-1} a'_{q,i} h_{i+m} \sum_{q=1}^{III} \nu_q x_q b'_{q,i}
\]

\[
=: u^{CL} \cdot \prod_{j=1}^{n} g_j^{a_{L,j}} h_j^{b_{L,j}}
\]
Representations of L, R, P

- If we let $\nu_I, \nu_{II}, \nu_{III}$ satisfy different systems of linear equations, we will also get

$$
R = u^{c_R} \cdot \prod_{j=1}^{n} g_j^{a_{R,j}} h_j^{b_{R,j}} \\
P = u^{c_P} \cdot \prod_{j=1}^{n} g_j^{a_{P,j}} h_j^{b_{P,j}}
$$

- The representation of P almost looks like a witness
 - It would be a witness, if $c_P = \sum_{j=1}^{n} a_{P,j} b_{P,j}$

A convention (until the end of discussing the inner product argument)

- i ranges from 1 to m;
- j ranges from 1 to $n = 2m$;
- q ranges over $\{I, II, III, IV\}$
Verification equation again

\[u \sum_{i=1}^{m} a'_{q,i} b'_{q,i} \cdot \prod_{i=1}^{m} g_{a'_{q,i} x_{q}^{-1}} h'_{q,i} x_{q} \prod_{i=1}^{m} g_{a'_{q,i} x_{q}} h'_{q,i} x_{q}^{-1} = \]

\[L x_{q}^{2} P R x_{q}^{-2} = \]

\[u^{c_{L} x_{q}^{2} + c_{P} + c_{R} x_{q}^{-2}} \prod_{j=1}^{n} g_{a_{L,j} x_{q}^{2} + a_{P,j} + a_{R,j} x_{q}^{-2}} h_{b_{L,j} x_{q}^{2} + b_{P,j} + b_{R,j} x_{q}^{-2}} \]

- The powers of \(u, g_{j}, h_{j} \) have to be equal (or we have a non-trivial discrete log relation)
- We get a number of equations out of this
Equal exponents

\[c_L x_q^2 + c_P + c_R x_q^{-2} = \sum_{i=1}^{m} a'_{q,i} b'_{q,i} \]

(exponents of \(u \))

\[a_{L,i} x_q^2 + a_{P,i} + a_{R,i} x_q^{-2} = a'_{q,i} x_q^{-1} \]

(exponents of \(g_i \))

\[a_{L,i+m} x_q^2 + a_{P,i+m} + a_{R,i+m} x_q^{-2} = a'_{q,i} x_q \]

(exponents of \(g_{i+m} \))

\[b_{L,i} x_q^2 + b_{P,i} + b_{R,i} x_q^{-2} = b'_{q,i} x_q \]

(exponents of \(h_i \))

\[b_{L,i+m} x_q^2 + b_{P,i+m} + b_{R,i+m} x_q^{-2} = b'_{q,i} x_q^{-1} \]

(exponents of \(h_{i+m} \))
Equal exponents

\[c_L x_q^2 + cp + c_R x_q^{-2} = \sum_{i=1}^{m} a'_{q,i} b'_{q,i} \quad \text{(exponents of } u) \]

\[a_L, i x_q^2 + a_p, i + a_R, i x_q^{-2} = a'_{q,i} x_q^{-1} \quad \text{(exponents of } g_i) \]

\[a_L, i+m x_q^2 + a_p, i+m + a_R, i+m x_q^{-2} = a'_{q,i} x_q \quad \text{(exponents of } g_{i+m}) \]

\[b_L, i x_q^2 + b_p, i + b_R, i x_q^{-2} = b'_{q,i} x_q \quad \text{(exponents of } h_i) \]

\[b_L, i+m x_q^2 + b_p, i+m + b_R, i+m x_q^{-2} = b'_{q,i} x_q^{-1} \quad \text{(exponents of } h_{i+m}) \]

Take \(x_q \) times the 2nd [5th] equation, \(x_q^{-1} \) times the 3rd [4th] equation and subtract:

\[a_L, i x_q^3 + (a_p, i - a_L, i+m) x_q + (a_R, i - a_p, i+m) x_q^{-1} - a_R, i+m x_q^{-3} = 0 \]

\[b_L, i+m x_q^3 + (b_p, i+m - b_L, i) x_q + (b_R, i+m - b_p, i) x_q^{-1} - b_R, i x_q^{-3} = 0 \]

These must be zero polynomials
“These must be zero polynomials...”

For four different values of x_q, we have

$$a_{L,i}x_q^3 + (a_{P,i} - a_{L,i+m})x_q + (a_{R,i} - a_{P,i+m})x_q^{-1} - a_{R,i+m}x_q^{-3} = 0$$
“These must be zero polynomials…”

For four different values of x_q, we have

$$a_L,i x_q^3 + (a_P,i - a_{L,i+m}) x_q + (a_{R,i} - a_{P,i+m}) x_q^{-1} - a_{R,i+m} x_q^{-3} = 0$$

$$a_L,i x_q^6 + (a_P,i - a_{L,i+m}) x_q^4 + (a_{R,i} - a_{P,i+m}) x_q^2 - a_{R,i+m} = 0$$
“These must be zero polynomials...”

For four different values of x_q^2, we have

$$a_{L,i} x_q^3 + (a_{P,i} - a_{L,i+m}) x_q + (a_{R,i} - a_{P,i+m}) x_q^{-1} - a_{R,i+m} x_q^{-3} = 0$$
$$a_{L,i} x_q^4 + (a_{P,i} - a_{L,i+m}) x_q^4 + (a_{R,i} - a_{P,i+m}) x_q^2 - a_{R,i+m} = 0$$
$$a_{L,i} (x_q^2)^3 + (a_{P,i} - a_{L,i+m}) (x_q^2)^2 + (a_{R,i} - a_{P,i+m}) x_q^2 - a_{R,i+m} = 0$$
“These must be zero polynomials...”

For four different values of x_q^2, we have

\[a_{L,i}x_q^3 + (a_{P,i} - a_{L,i+m})x_q + (a_{R,i} - a_{P,i+m})x_q^{-1} - a_{R,i+m}x_q^{-3} = 0 \]
\[a_{L,i}x_q^6 + (a_{P,i} - a_{L,i+m})x_q^4 + (a_{R,i} - a_{P,i+m})x_q^2 - a_{R,i+m} = 0 \]
\[a_{L,i}(x_q^2)^3 + (a_{P,i} - a_{L,i+m})(x_q^2)^2 + (a_{R,i} - a_{P,i+m})x_q^2 - a_{R,i+m} = 0 \]

A non-zero cubic polynomial can have at most three roots over a field
Equal exponents, again

2nd–5th equations
\[
\begin{align*}
 a_{L,i}x_q^2 + a_{P,i} + a_{R,i}x_q^{-2} &= a'_{q,i}x_q^{-1} \\
 a_{L,i+m}x_q^2 + a_{P,i+m} + a_{R,i+m}x_q^{-2} &= a'_{q,i}x_q \\
 b_{L,i}x_q^2 + b_{P,i} + b_{R,i}x_q^{-2} &= b'_{q,i}x_q \\
 b_{L,i+m}x_q^2 + b_{P,i+m} + b_{R,i+m}x_q^{-2} &= b'_{q,i}x_q^{-1}
\end{align*}
\]

Zero polynomials
\[
\begin{align*}
 a_{L,i} &= 0 & a_{R,i} &= a_{P,i+m} \\
 a_{R,i+m} &= 0 & a_{L,i+m} &= a_{P,i} \\
 b_{R,i} &= 0 & b_{L,i} &= b_{P,i+m} \\
 b_{L,i+m} &= 0 & b_{R,i+m} &= b_{P,i}
\end{align*}
\]
Equal exponents, again

2nd–5th equations

\[a_{L,i}x_q^2 + a_{P,i} + a_{R,i}x_q^{-2} = a'_{q,i}x_q^{-1} \]
\[a_{L,i+m}x_q^2 + a_{P,i+m} + a_{R,i+m}x_q^{-2} = a'_{q,i}x_q \]
\[b_{L,i}x_q^2 + b_{P,i} + b_{R,i}x_q^{-2} = b'_{q,i}x_q \]
\[b_{L,i+m}x_q^2 + b_{P,i+m} + b_{R,i+m}x_q^{-2} = b'_{q,i}x_q^{-1} \]

Zero polynomials

\[a_{L,i} = 0 \quad a_{R,i} = a_{P,i+m} \]
\[a_{L,i+m} = 0 \quad a_{L,i+m} = a_{P,i} \]
\[b_{R,i} = 0 \quad b_{L,i} = b_{P,i+m} \]
\[b_{L,i+m} = 0 \quad b_{R,i+m} = b_{P,i} \]
Equal exponents, again

2nd–5th equations

\[a_{P,i} + a_{R,i} x_q^{-2} = a'_{q,i} x_q^{-1} \]
\[a_{L,i+m} x_q^2 + a_{P,i+m} = a'_{q,i} x_q \]
\[b_{L,i} x_q^2 + b_{P,i} = b'_{q,i} x_q \]
\[b_{P,i+m} + b_{R,i+m} x_q^{-2} = b'_{q,i} x_q^{-1} \]

Zero polynomials

\[a_{L,i} = 0 \quad a_{R,i} = a_{P,i+m} \]
\[a_{R,i+m} = 0 \quad a_{L,i+m} = a_{P,i} \]
\[b_{R,i} = 0 \quad b_{L,i} = b_{P,i+m} \]
\[b_{L,i+m} = 0 \quad b_{R,i+m} = b_{P,i} \]
Equal exponents, again

2nd–5th equations

\[a_{P,i} + a_{R,i} x_q^{-2} = a'_{q,i} x_q^{-1} \]
\[a_{L,i+m} x_q^2 + a_{P,i+m} = a'_{q,i} x_q \]
\[b_{L,i} x_q^2 + b_{P,i} = b'_{q,i} x_q \]
\[b_{P,i+m} + b_{R,i+m} x_q^{-2} = b'_{q,i} x_q^{-1} \]

Zero polynomials

\[a_{L,i} = 0 \]
\[a_{R,i} = a_{P,i+m} \]
\[a_{R,i+m} = 0 \]
\[a_{L,i+m} = a_{P,i} \]
\[b_{R,i} = 0 \]
\[b_{L,i} = b_{P,i+m} \]
\[b_{L,i+m} = 0 \]
\[b_{R,i+m} = b_{P,i} \]
Equal exponents, again

2nd–5th equations
\[a_{P,i} + a_{P,i+m}x_q^{-2} = a'_{q,i}x_q^{-1} \]
\[a_{P,i}x_q^2 + a_{P,i+m} = a'_{q,i}x_q \]
\[b_{P,i+m}x_q^2 + b_{P,i} = b'_{q,i}x_q \]
\[b_{P,i+m} + b_{P,i}x_q^{-2} = b'_{q,i}x_q^{-1} \]

Zero polynomials
\[a_{L,i} = 0 \quad a_{R,i} = a_{P,i+m} \]
\[a_{R,i+m} = 0 \quad a_{L,i+m} = a_{P,i} \]
\[b_{R,i} = 0 \quad b_{L,i} = b_{P,i+m} \]
\[b_{L,i+m} = 0 \quad b_{R,i+m} = b_{P,i} \]
Equal exponents, again

- 2nd and 5th equation:
 \[a'_{q,i} x_q^{-1} = a_{P,i} + a_{P,i+m} x_q^{-2} \]
 \[b'_{q,i} x_q^{-1} = b_{P,i+m} + b_{P,i} x_q^{-2} \]

- Multiply both sides by \(x_q \)
 \[a'_{q,i} = a_{P,i} x_q + a_{P,i+m} x_q^{-1} \]
 \[b'_{q,i} = b_{P,i} x_q^{-1} + b_{P,i+m} x_q \]

(would get the same from 3rd and 4th equations)
\(\vec{a}_P, \vec{b}_P \) is the witness

\[
a'_{q,i} = a_{P,i}x_q + a_{P,i+m}x_q^{-1} \quad b'_{q,i} = b_{P,i}x_q^{-1} + b_{P,i+m}x_q
\]

The inner product of \(\vec{a}'_q \) and \(\vec{b}'_q \) is

\[
\sum_{i=1}^{m} a'_{q,i} b'_{q,i} = \sum_{i=1}^{m} (a_{P,i}x_q + a_{P,i+m}x_q^{-1})(b_{P,i}x_q^{-1} + b_{P,i+m}x_q)
\]

\[
= x_q^2 \sum_{i=1}^{m} a_{P,i}b_{P,i+m} + \sum_{j=1}^{n} a_{P,j}b_{P,j} + x_q^{-2} \sum_{i=1}^{m} a_{P,i+m}b_{P,i}
\]
\(\vec{a}_P, \vec{b}_P \) is the witness

\[
a'_{q,i} = a_{P,i}x_q + a_{P,i+m}x_q^{-1} \quad b'_{q,i} = b_{P,i}x_q^{-1} + b_{P,i+m}x_q
\]

The inner product of \(\vec{a}'_q \) and \(\vec{b}'_q \) is

\[
\sum_{i=1}^{m} a'_{q,i}b'_{q,i} = \sum_{i=1}^{m} (a_{P,i}x_q + a_{P,i+m}x_q^{-1})(b_{P,i}x_q^{-1} + b_{P,i+m}x_q)
\]

\[
= x_q^2 \sum_{i=1}^{m} a_{P,i}b_{P,i+m} + \sum_{j=1}^{n} a_{P,j}b_{P,j} + x_q^{-2} \sum_{i=1}^{m} a_{P,i+m}b_{P,i}
\]

\[
\sum_{i=1}^{m} a'_{q,i}b'_{q,i} = c_L x_q^2 + c_P + c_R x_q^{-2} \quad (1st \ equation)
\]

These polynomials have to be equal. Free terms give \(c_P = \sum_{j=1}^{n} a_{P,j}b_{P,j} \)
Soundness of recursive protocol

- To get a witness of length n, we need four executions (and witnesses) of length $n/2$
- To get a witness of length $n/2$, we need four executions (and witnesses) of length $n/4$
- etc.
- To get a witness of length n, we need $4^{\log_2 n} \approx n^2$ executions
Representing arithmetic circuits

- There are \(n \) (binary) multiplication gates
 - \(i \)-th one has inputs \(a_{L,i} \) and \(a_{R,i} \), output \(a_{O,i} \)
 - These three values per multiplication gate are the witness

- There are \(Q \) affine relationships between \(a_{L,i} \), \(a_{R,i} \), \(a_{O,i} \)

\[
\sum_{i=1}^{n} w_{L,q,i} a_{L,i} + \sum_{i=1}^{n} w_{R,q,i} a_{R,i} + \sum_{i=1}^{n} w_{O,q,i} a_{O,i} = c_q \quad (1 \leq q \leq Q)
\]

- The coefficients \(w_{L,q,i} \), \(w_{R,q,i} \), \(w_{O,q,i} \) and \(c_q \) are part of the instance
Representing arithmetic circuits

- There are n (binary) multiplication gates
 - i-th one has inputs $a_{L,i}$ and $a_{R,i}$, output $a_{O,i}$
 - These three values per multiplication gate are the witness

- There are Q affine relationships between $a_{L,i}$, $a_{R,i}$, $a_{O,i}$

\[
\sum_{i=1}^{n} w_{L,q,i} a_{L,i} + \sum_{i=1}^{n} w_{R,q,i} a_{R,i} + \sum_{i=1}^{n} w_{O,q,i} a_{O,i} = c_q \quad (1 \leq q \leq Q)
\]

- The coefficients $w_{L,q,i}$, $w_{R,q,i}$, $w_{O,q,i}$ and c_q are part of the instance
- Some Pedersen commitments C_1, \ldots, C_m could be a part of the instance
 - Messages v_1, \ldots, v_m and randomnesses are part of the witness
 - Messages can show up in the affine relationships
Representing arithmetic circuits

- There are n (binary) multiplication gates
 - i-th one has inputs $a_{L,i}$ and $a_{R,i}$, output $a_{O,i}$
 - These three values per multiplication gate are the witness
- There are Q affine relationships between $a_{L,i}$, $a_{R,i}$, $a_{O,i}$

$$\sum_{i=1}^{n} w_{L,q,i} a_{L,i} + \sum_{i=1}^{n} w_{R,q,i} a_{R,i} + \sum_{i=1}^{n} w_{O,q,i} a_{O,i} + \sum_{j=1}^{m} w_{V,q,j} v_j = c_q \quad (1 \leq q \leq Q)$$

- The coefficients $w_{L,q,i}$, $w_{R,q,i}$, $w_{O,q,i}$, $w_{V,q,j}$ and c_q are part of the instance
- Some Pedersen commitments C_1, \ldots, C_m could be a part of the instance
 - Messages v_1, \ldots, v_m and randomnesses are part of the witness
 - Messages can show up in the affine relationships
 - (I won't talk about them here)
Start of the protocol

- CRS contains \(g_1, \ldots, g_n, h_1, \ldots, h_n, h \in \mathbb{G} \)
- \(P \) picks \(\alpha, \beta \leftarrow \mathbb{Z}_p \); computes and sends to \(V \)

\[
A_I = h^\alpha \cdot \prod_{i=1}^{n} g_i^{a_{L,i}} h_i^{a_{R,i}}
\]

\[
A_O = h^\beta \cdot \prod_{i=1}^{n} g_i^{a_{O,i}}
\]

(Pedersen vector commitments)
Many equations to one

\[
a_{L,i}a_{R,i} - a_{O,i} = 0 \quad (1 \leq i \leq n)
\]

\[
\sum_{i=1}^{n} w_{L,q,i}a_{L,i} + \sum_{i=1}^{n} w_{R,q,i}a_{R,i} + \sum_{i=1}^{n} w_{O,q,i}a_{O,i} = c_q \quad (1 \leq q \leq Q)
\]
Many equations to one

\[
\begin{align*}
 a_{L,i}a_{R,i} - a_{O,i} &= 0 \quad (1 \leq i \leq n) \\
 \sum_{i=1}^{n} w_{L,q,i}a_{L,i} + \sum_{i=1}^{n} w_{R,q,i}a_{R,i} + \sum_{i=1}^{n} w_{O,q,i}a_{O,i} &= c_q \quad (1 \leq q \leq Q)
\end{align*}
\]

Turn it to a single polynomial equation (variables \(Y, Z\))

\[
\sum_{i=1}^{n} (a_{L,i}a_{R,i} - a_{O,i})Y^{i-1} + \\
\sum_{q=1}^{Q} \left(\sum_{i=1}^{n} w_{L,q,i}a_{L,i} + \sum_{i=1}^{n} w_{R,q,i}a_{R,i} + \sum_{i=1}^{n} w_{O,q,i}a_{O,i} \right) Z^q = \sum_{q=1}^{Q} c_q Z^q
\]

\(\therefore\) \(V\) picks \(y, z \leftarrow \mathbb{Z}_p\), sends them to \(P\)
Committing to a polynomial

Functionality
- P becomes bound to a polynomial $f \in \mathbb{Z}_p[X]$
- V picks a value $x \in X$
- P gives $f(x)$ to V and convinces him of its correctness

A naïve implementation (sufficient for us)
- P commits to all coefficients of f, using Pedersen commitments
- V sends x to P
- Both compute commitment to $f(x)$, as the linear combination of commitments to coefficients
- P opens $f(x)$ to V
What happens next? Arguments with polynomials...

- P substitutes y, z for Y, Z
- Define polynomials $\ell_i(X), r_i(X) (1 \leq i \leq n)$ so, that
 - denote $t(X) = \sum_i \ell_i(X)r_i(X)$
 - The coefficient of X^2 in $t(X)$ is the LHS of the equation three slides ago (almost)
 - For given $x \in \mathbb{Z}_p$, the verifier (using A_I, A_O) can compute smth. like

\[
C = h^{\text{smth}} \cdot \prod_{i=1}^{n} g_i^{\ell_i(x)} h_i^{r_i(x)} \quad (\text{like a vector commitment to } \{\ell_i(x), r_i(x)\}_{i=1}^{n})
\]

- P commits to $t(X)$. Shows, the coefficient of X^2 is almost $\sum_q z^q c_q$
- V challenges with $x \leftarrow \mathbb{Z}_p$
- P opens $\ell_i(x), r_i(x)$ for all i (i.e. opens C)
- P also opens $t(x)$. V checks that $t(x) = \sum_i \ell_i(x)r_i(x)$

Nov-Dec 2021 200
The polynomials

\[
\ell_i(X) = a_{L,i} X + a_{O,i} X^2 + y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i} z^q \right) X
\]

\[
r_i(X) = y^{i-1} a_{R,i} X - y^{i-1} + \left(\sum_{q=1}^{Q} w_{L,q,i} z^q \right) X + \left(\sum_{q=1}^{Q} w_{O,q,i} z^q \right)
\]

The coefficient of \(X^2\) in \(t(X) = \sum_i \ell_i(X) r_i(X)\) is

\[
\sum_{i=1}^{n} \left[\left(a_{L,i} + y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i} z^q \right) \right) \left(y^{i-1} a_{R,i} + \left(\sum_{q=1}^{Q} w_{L,q,i} z^q \right) \right) + a_{O,i} \left(-y^{i-1} + \left(\sum_{q=1}^{Q} w_{O,q,i} z^q \right) \right) \right]
\]
The polynomials

The coefficient of X^2 in $t(X) = \sum_i \ell_i(X) r_i(X)$ is

$$\sum_{i=1}^n \left[\left(a_{L,i} + y^{-i+1} \left(\sum_{q=1}^Q w_{R,q,i} z^q \right) \right) \left(y^{-i} a_{R,i} + \left(\sum_{q=1}^Q w_{L,q,i} z^q \right) \right) + a_{O,i} \left(-y^{-i-1} + \left(\sum_{q=1}^Q w_{O,q,i} z^q \right) \right) \right]$$

Which equals

$$\sum_{q=1}^Q \left(\sum_{i=1}^n w_{L,q,i} a_{L,i} + \sum_{i=1}^n w_{R,q,i} a_{R,i} + \sum_{i=1}^n w_{O,q,i} a_{O,i} \right) z^q + \sum_{i=1}^n (a_{L,i} a_{R,i} - a_{O,i}) y^{-i-1} + \sum_{i=1}^n y^{-i+1} \left(\sum_{q=1}^Q w_{R,q,i} z^q \right) \left(\sum_{q=1}^Q w_{L,q,i} z^q \right)$$
The polynomials

The coefficient of X^2 in $t(X) = \sum_i \ell_i(X)r_i(X)$ is

$$\sum_{i=1}^{n} \left[\left(a_{L,i} + y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i}z^q \right) \right) \left(y^{i-1}a_{R,i} + \left(\sum_{q=1}^{Q} w_{L,q,i}z^q \right) \right) + \right.$$

$$a_{O,i} \left(-y^{i-1} + \left(\sum_{q=1}^{Q} w_{O,q,i}z^q \right) \right) \right]$$

Which equals

$$\sum_{q=1}^{Q} \left(\sum_{i=1}^{n} w_{L,q,i}a_{L,i} + \sum_{i=1}^{n} w_{R,q,i}a_{R,i} + \sum_{i=1}^{n} w_{O,q,i}a_{O,i} \right) z^q +$$

$$\sum_{i=1}^{n} \left(a_{L,i}a_{R,i} - a_{O,i} \right)y^{i-1} + \sum_{i=1}^{n} \left(y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i}z^q \right) \left(\sum_{q=1}^{Q} w_{L,q,i}z^q \right) \right.$$

Nov-Dec 2021 202
Committing to t and opening

- P commits to coefficients of X, X^3
- V computes the commitment to the coefficient of X^2 himself
 - This coefficient is
 \[
 \sum_{q=1}^{Q} c_q z^q + \sum_{i=1}^{n} y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i} z^q \right) \left(\sum_{q=1}^{Q} w_{L,q,i} z^q \right)
 \]
 - Using h^0 as the blinding factor
- V sends the challenge x
- P sends $t(x)$ to V, as well as the blinding exponent
 - Computed from the blinding exponents of the coefficients
Commitment to points on polynomials ℓ_i, r_i

\[
\ell_i(x) = a_{L,i}x + a_{O,i}x^2 + y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i}z^q \right) x
\]

\[
r_i(x) = y^{-i} a_{R,i}x - y^{-i+1} + \left(\sum_{q=1}^{Q} w_{L,q,i}z^q \right) x + \left(\sum_{q=1}^{Q} w_{O,q,i}z^q \right)
\]

The commitment, computed by V, is

\[
A_I^x \cdot A_O^x \cdot \prod_{i=1}^{n} g_i \quad y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i}z^q \right) x - y^{-i} + \left(\sum_{q=1}^{Q} w_{L,q,i}z^q \right) x + \left(\sum_{q=1}^{Q} w_{O,q,i}z^q \right) \quad \ldots
\]

...but not quite...
Change the CRS

- Think of the CRS containing $h'_i = h^{y_i-1}_i$, instead of h_i
- We had $A_1 = h^\alpha \cdot \prod_{i=1}^n g_i^{a_{L,i}} h_i^{a_{R,i}}$. This equals $A_1 = h^\alpha \cdot \prod_{i=1}^n g_i^{a_{L,i}} h_i^{y_i-1} a_{R,i}$
- The whole commitment C is

$$C = A_1^x \cdot A_0^x \cdot \prod_{i=1}^n g_i^{y_i-1} \left(\sum_{q=1}^Q w_{R,q,i} z^q \right) x^{y_i-1} + \left(\sum_{q=1}^Q w_{L,q,i} z^q \right) x + \left(\sum_{q=1}^Q w_{O,q,i} z^q \right)$$

- The blinding exponent of Pedersen’s commitment is $\alpha x + \beta x^2$
- P opens C as $\ell_1(x), r_1(x), \ldots, \ell_n(x), r_n(x)$
- V checks correct opening, also checks that $t(x) = \sum_{i=1}^n \ell_i(x) r_i(x)$
Blinding

- **Problem:** $\ell_i(x)$, $r_i(x)$, $t(x)$ leak about $a_{L,i}$, $a_{R,i}$, $a_{O,i}$

Solution

- In the beginning, P also generates $\overrightarrow{s_L}, \overrightarrow{s_R} \in \mathbb{Z}_p^n$
- Commits to them:
 - Generates $\rho \leftarrow \mathbb{Z}_p$
 - Sends $A_S = h^\rho \cdot \prod_{i=1}^{n} g_i^{s_{L,i}} h_i^{s_{R,i}}$ to V, together with A_I and A_O
Blinding of ℓ_i, r_i

$$\ell_i(X) = a_{L,i}X + a_{O,i}X^2 + y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,i} z_i^q \right) X$$
\[+ s_{L,i}X^3 \]

$$r_i(X) = y^{-1}a_{R,i}X - y^{-1} + \left(\sum_{q=1}^{Q} w_{L,i} z_i^q \right) X + \left(\sum_{q=1}^{Q} w_{O,i} z_i^q \right)$$
\[+ y^{-1} s_{R,i}X^3 \]
Changes to the construction, due to blinding

- Polynomial t: now has degree 6
 - No change to coefficient of X^2
- Commitment C includes the factor A_S^3

\[
C = A_1^x \cdot A_O^x \cdot A_S^x \cdot \prod_{i=1}^{n} y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i} z^q \right) x^{-y^{i-1}} + \left(\sum_{q=1}^{Q} w_{L,q,i} z^q \right) h'_i + \left(\sum_{q=1}^{Q} w_{O,q,i} z^q \right)
\]

- ...and the blinding exponent adds ρx^3
Whole protocol

- The CRS contains $g_1, \ldots, g_n, h_1, \ldots, h_n, h \in G$
- P computes and sends A_I, A_O, A_S
- V sends y, z; both can now compute h'_1, \ldots, h'_n
- P sends commitments to the coefficients of X, X^3, X^4, X^5, X^6 in $t(X)$
- V sends x; both compute commitment to $t(x)$; both compute C
- P opens commitment to $t(x)$
- P sends $\ell_i(x), r_i(x)$ for $1 \leq i \leq n$, and the blinding exponent $\sigma = \alpha x + \beta x^2 + \rho x^3$
- V checks that

$$t(x) = \sum_{i=1}^{n} \ell_i(x) r_i(x) \quad \text{and} \quad C/h^\sigma = \prod_{i=1}^{n} g_i^{\ell_i(x)} h'_i r_i(x)$$
Whole protocol

- The CRS contains $g_1, \ldots, g_n, h_1, \ldots, h_n, h \in \mathbb{G}$
- P computes and sends A_I, A_O, A_S
- V sends y, z; both can now compute h'_1, \ldots, h'_n
- P sends commitments to the coefficients of X, X^3, X^4, X^5, X^6 in $t(X)$
- V sends x; both compute commitment to $t(x)$; both compute C
- P opens commitment to $t(x)$
- P sends $\ell_i(x), r_i(x)$ for $1 \leq i \leq n$, and the blinding exponent $\sigma = \alpha x + \beta x^2 + \rho x^3$
- V checks that

$$t(x) = \sum_{i=1}^n \ell_i(x)r_i(x) \quad \text{and} \quad C/h^\sigma = \prod_{i=1}^n g_i^{\ell_i(x)}h'_i r_i(x)$$

...using the inner product argument
About the security proof

- Completeness — hopefully I did convince you in this
- Zero-knowledge — easy. There’s sufficient randomization everywhere
- Soundness — similar to the inner product proof:
 - Find \(\vec{a}_L, \vec{a}_R, \vec{a}_O \) as before
 - Get so many transcripts with different witnesses, that the equations between values of polynomials become equations between polynomials
 - 7 different \(x \)-s, \(n \) different \(y \)-s, \((Q + 1) \) different \(z \)-s
 - \(7(Q + 1)n \approx O(n^2) \) in total, still a small number
About the security proof

- Completeness — hopefully I did convince you in this
- Zero-knowledge — easy. There’s sufficient randomization everywhere
- Soundness — similar to the inner product proof:
 - Find $\vec{a}_L, \vec{a}_R, \vec{a}_O$ as before
 - Get so many transcripts with different witnesses, that the equations between values of polynomials become equations between polynomials
 - 7 different x-s, n different y-s, $(Q + 1)$ different z-s
 - $7(Q + 1)n \approx O(n^2)$ in total, still a small number

Efficiency of the witness extractor

- Together with inner product proof, needs $O(n^2) \cdot O(n^2) = O(n^4)$ transcripts
 - Disc. log. in \mathbb{G} must survive the attack of complexity $O(n^4)$
- I wonder if instead of $(Q + 1)n$ different y-s and z-s, we could manage with $(Q + 1 + n)$ different y-s and z-s...
Linear PCPs
Linear PCPs (LPCP)

- The prover prepares a proof string $\vec{\pi}$ of length n.
- Each entry of $\vec{\pi}$ is from the field \mathbb{F}.
- The verifier’s queries are vectors $\vec{q} \in \mathbb{F}^n$.
- The answers are the inner products $\langle \vec{\pi}, \vec{q} \rangle$.
Linear PCPs (LPCP)

- The prover prepares a proof string $\vec{\pi}$ of length n
- Each entry of $\vec{\pi}$ is from the field \mathbb{F}
- The verifier’s queries are vectors $\vec{q} \in \mathbb{F}^n$
- The answers are the inner products $\langle \vec{\pi}, \vec{q} \rangle$
- Depending on the cryptographic realization, V has or has not to be ready for
 - The answers not being computed linearly from queries
 - Different answers being computed using different linear functions
Committing to a linear PCP

- Let there be an additively homomorphic encryption scheme \((E, D)\)
 - Only a single keypair is in use. Verifier has the private key
 - Plaintext space is \(\mathbb{F}\)
 - Let \(\oplus\) denote addition and \(\odot\) constant multiplication

Commitment

- The prover has \(\vec{\pi} = (\pi_1, \ldots, \pi_n)\)
- The verifier randomly generates \(r_1, \ldots, r_n \xleftarrow{\$} \mathbb{F}\)
- \(V \rightarrow P : E(r_1), \ldots, E(r_n)\). Denote this operation by \(E(\vec{r})\)
- \(P \rightarrow V : \bigoplus_{i=1}^{n} \pi_i \odot E(r_i)\). Denote this operation by \([\langle \vec{\pi}, E(\vec{r}) \rangle]\)
- Verifier decrypts. Denote \(s = \langle \vec{\pi}, \vec{r} \rangle\)
Querying a committed PCP

- V wants to make k queries $\vec{q}_1, \ldots, \vec{q}_k$
 - Let all queries be made at the same time. I.e. V is non-adaptive
- V picks $\alpha_1, \ldots, \alpha_k \leftarrow \mathbb{F}$, defines $\vec{q}_{k+1} := \vec{r} + \sum_{i=1}^{k} \alpha_i \cdot \vec{q}_i$
- $V \rightarrow P : \vec{q}_1, \ldots, \vec{q}_{k+1}$
- $P \rightarrow V : a_1, \ldots, a_{k+1}$, where $a_i = \langle \vec{\pi}, \vec{q}_i \rangle$
- V checks that $a_{k+1} = s + \sum_{i=1}^{k} \alpha_i a_i$

Soundness follows from \vec{r} computationally masking \vec{q}_{k+1}
Soundness

- From P’s point of view, \vec{r} could be any $\vec{q}_{k+1} - \sum_{i=1}^{k} \alpha_i \cdot \vec{q}_i$, for $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$

- The corresponding s is $\langle \vec{\pi}, \vec{q}_{k+1} \rangle - \sum_{i=1}^{k} \alpha_i \langle \vec{\pi}, \vec{q}_i \rangle + \pi_0$

- π_0 and $\vec{\pi}$ are defined by P’s actions during the commitment

- P must come up with a_1, \ldots, a_{k+1} that satisfy

\[a_{k+1} = \langle \vec{\pi}, \vec{q}_{k+1} \rangle - \sum_{i=1}^{k} \alpha_i \langle \vec{\pi}, \vec{q}_i \rangle + \pi_0 + \sum_{i=1}^{k} \alpha_i a_i \]

\[a_{k+1} - \langle \vec{\pi}, \vec{q}_{k+1} \rangle = \sum_{i=1}^{k} \alpha_i (a_i - \langle \vec{\pi}, \vec{q}_i \rangle) + \pi_0 \]

for a significant fraction of possible $(\alpha_1, \ldots, \alpha_k)$

- Hence P should pick $a_i = \langle \vec{\pi}, \vec{q}_i \rangle$ for $i \in \{1, \ldots, k\}$
Linear PCP for CIRCUIT-SAT

- Circuit over \mathbb{F}, m input and internal gates ($+$ and \times), t outputs, ℓ fixed inputs
 - Let $\text{in}_1, \text{in}_2 : \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$ give the inputs of internal gates
- Let $\vec{w} \in \mathbb{F}^m$ be a satisfying assignment to gates
- Constraints:
 - For any addition gate a: $w_a - w_{\text{in}_1(a)} - w_{\text{in}_2(a)} = 0$
 - For any multiplication gate a: $w_a - w_{\text{in}_1(a)} \cdot w_{\text{in}_2(a)} = 0$
 - For input a fixed to the value x_a: $w_a - x_a = 0$
 - For output a fixed to the value y_a: $w_a - y_a = 0$

The proof string is $\vec{\pi} = \vec{w} \| (\vec{w} \otimes \vec{w})$ (where $\|$ is concatenation)
Queries

- If V has to be ready for non-linearity from cheating P:
 - Check for linearity: query $\vec{\pi}$ at 3 linearly dependent points $\in \mathbb{F}^{m+m^2}$, compare answers
 - Turn each query below to two queries at random points on a random line through original query, interpolate the answer

- Check Hadamard product: Let $\vec{q}_1, \vec{q}_2 \leftarrow \mathbb{F}^m$
 - make the queries $\vec{q}_1\parallel 0^{m^2} \mapsto a_1$, $\vec{q}_2\parallel 0^{m^2} \mapsto a_2$, $0^m (\vec{q}_1 \otimes \vec{q}_2) \mapsto a_3$
 - Check that $a_1 \cdot a_2 = a_3$

- Check the constraints of the circuit
 - Each constraint c corresponds to a simple query string $\vec{q}_c \in \mathbb{F}^{m+m^2}$
 - The expected answer is 0 or x_a or y_a
 - Query a single random linear combination of \vec{q}_c-s
A linear-size LPCP for R1CS
A QAP with variables $a_0 = 1, a_1, \ldots, a_m$ is a set of equations of the form
\[
\left(\sum_{i=0}^{m} u_{i,q} \cdot a_i \right) \cdot \left(\sum_{i=0}^{m} v_{i,q} \cdot a_i \right) = \left(\sum_{i=0}^{m} w_{i,q} \cdot a_i \right)
\]

- $u_{i,q}, v_{i,q}, w_{i,q} \in \mathbb{Z}_p$
- $0 \leq i \leq m$. Let there be n equations, i.e. $1 \leq q \leq n$

Very similar to Rank-1 constraint systems
QAPs with polynomials — motivation

• Let \(r_1, \ldots, r_n \) be distinct elements of \(\mathbb{Z}_p \)
• Define polynomials \(u_i, v_i, w_i \) (\(0 \leq i \leq m \)) by
 \[
 u_i(r_q) = u_{i,q} \quad v_i(r_q) = v_{i,q} \quad w_i(r_q) = w_{i,q}
 \]
• We want that for each \(r_1, \ldots, r_n \)
 \[
 \left(\sum_{i=0}^{m} a_i u_i(r_q) \right) \cdot \left(\sum_{i=0}^{m} a_i v_i(r_q) \right) - \left(\sum_{i=0}^{m} a_i w_i(r_q) \right) = 0
 \]
• Hence we want the polynomial
 \[
 \left(\sum_{i=0}^{m} a_i u_i(X) \right) \cdot \left(\sum_{i=0}^{m} a_i v_i(X) \right) - \left(\sum_{i=0}^{m} a_i w_i(X) \right)
 \]
 to be divisible with the polynomial \(t(X) = \prod_{i=1}^{n} (X - r_i) \)
QAPs with polynomials — syntax

Components

- **Field** \mathbb{Z}_p. Numbers ℓ, m, n
- **Polynomial** $t \in \mathbb{Z}_p[X]$ of degree n
- **Polynomials** $u_i, v_i, w_i \in \mathbb{Z}_p[X]$ of degree at most $(n - 1)$
 - $0 \leq i \leq m$

The relation

- **Instance**: $(a_0, \ldots, a_\ell) \in \mathbb{Z}_p^{\ell+1}$.
 Witness: $(a_{\ell+1}, \ldots, a_m) \in \mathbb{Z}_p^{m-\ell}$
- **Relation**: $a_0 = 1$ and
 \[
 \left(\sum_{i=0}^{m} a_i u_i(X) \right) \cdot \left(\sum_{i=0}^{m} a_i v_i(X) \right) \equiv \left(\sum_{i=0}^{m} a_i w_i(X) \right) \pmod{t(X)}
 \]
The linear proof

- The proof string
 - First part: the vector \vec{a} (only the witness part)
 - Second part: coefficients of the polynomial $h(X)$ of degree $\leq n - 2$, satisfying
 \[
 \left(\sum_{i=0}^{m} a_i u_i(X) \right) \cdot \left(\sum_{i=0}^{m} a_i v_i(X) \right) - \left(\sum_{i=0}^{m} a_i w_i(X) \right) = t(X) \cdot h(X)
 \]
- Verifier picks a random $r \in \mathbb{F}$, computes and queries:
 - computes $u = (u_i(r))_{i=0}^{m}$, $v = (v_i(r))_{i=0}^{m}$, $w = (w_i(r))_{i=0}^{m}$, queries the first part of the proof string with their suffixes of length $(m - \ell)$, computes the left hand side of the equation above
 - queries the second part of the proof string with $(1, r, r^2, \ldots, r^{n-2})$ thus learning $h(r)$, computes $t(r)$, computes the right hand side of the equation above
Adding zero-knowledge (1/3)

- We checked whether $A(r) \cdot B(r) - C(r) = t(r) \cdot h(r)$, where

 \[
 A(X) = \sum_{i=0}^{m} a_i u_i(X) \\
 B(X) = \sum_{i=0}^{m} a_i v_i(X) \\
 C(X) = \sum_{i=0}^{m} a_i w_i(X)
 \]

 This leaked $A(r), B(r), C(r), h(r)$, which may have been dependent on the witness $(a_{\ell+1}, \ldots, a_m)$.

- The prover hides these values by adding a random multiple of $t(X)$ to each of A, B, C.
Adding zero-knowledge (2/3)

- Prover picks three random values $r_A, r_B, r_C \in \mathbb{F}$. Defines
 \[A^*(X) := A(X) + r_A \cdot t(X) \quad B^*(X) := B(X) + r_B \cdot t(X) \quad C^*(X) := C(X) + r_C \cdot t(X) \]
 and
 \[h^*(X) = \frac{(A^*(X) \cdot B^*(X) - C^*(X))}{t(X)} \]
- P appends r_A, r_B, r_C to the first part of the proof string. Replaces the second part with coefficients of h^*
- V makes the following queries against the first part of the proof string:
 \begin{align*}
 (u_{\ell+1}, \ldots, u_m, t(r), 0, 0) & \mapsto z_1 \\
 (v_{\ell+1}, \ldots, v_m, 0, t(r), 0) & \mapsto z_2 \\
 (w_{\ell+1}, \ldots, w_m, 0, 0, t(r)) & \mapsto z_3
 \end{align*}
 and the same old query against the second part, and does the same verification
Adding zero-knowledge (3/3)

- z_1, z_2, z_3 are masked with (non-zero multiples of) r_A, r_B, r_C
- The value $h^*(r)$ is determined as $(z_1 \cdot z_2 - z_3)/t(r)$ in an accepting transcript
[Groth16] zk-SNARK
Non-interactive linear proofs (NILP)

- A relation R is given (over any math. structure). ϕ — instance. w — witness

Syntax

- $(\vec{\sigma}, \vec{\tau}) \leftarrow \text{Setup()} \in \mathbb{F}^m \times \mathbb{F}^n$
- $\Pi \leftarrow \text{ProofMatrix}(\phi, w) \in \mathbb{F}^{k \times m}$
 - The actual proof is $\vec{\pi} = \Pi \vec{\sigma} \in \mathbb{F}^k$
- $\vec{t} \leftarrow \text{Test}(\phi) \in (\mathbb{F}[x_1, \ldots, x_{m+k}])^\eta$, where each polynomial in \vec{t} has the total degree at most 2
 - \vec{t} is used to verify. Proof $\vec{\pi}$ is accepted, if $t(\vec{\sigma}, \vec{\pi}) = 0$ for each $t \in \vec{t}$
- $\vec{\pi} \leftarrow \text{Sim}(\vec{\tau}, \phi)$
Affine attacks (by prover)

Soundness

There exists an extractor \mathcal{X}, such that if

- Attacker (seeing $\vec{\sigma}$) comes up with some (ϕ, Π)
- $\Pi \vec{\sigma}$ is a good proof for ϕ, i.e. $\text{Test}(\phi)(\vec{\sigma}, \Pi \vec{\sigma}) = \vec{0}$

then $\mathcal{X}(\phi, \Pi) \in R(\phi)$, i.e. is a good witness for ϕ

Disclosure-freeness

Adversary cannot distinguish different $\vec{\sigma}$-s with valid (i.e. quadratic) tests:

- Let \mathcal{A} generate $\vec{t}_{\text{adv}} \in (\mathbb{F}[x_1, \ldots, x_m])^\eta$
- Generate $\vec{\sigma}_0, \vec{\sigma}_1$ by running Setup() twice
- Then, with high probability, $\vec{t}_{\text{adv}}(\vec{\sigma}_0) = \vec{0}$ iff $\vec{t}_{\text{adv}}(\vec{\sigma}_1) = \vec{0}$
From QAP to NILP: Setup()

- Recall: relation R was given by
 - Polynomials u_i, v_i, w_i of degree $\leq (n - 1)$, where $0 \leq i \leq m$
 - Polynomial t of degree n
 - The number ℓ: the length $(+1)$ of the instance

- Pick the elements $\alpha, \beta, \gamma, \delta, x \leftarrow F^*$. These are the trapdoor τ

- The CRS σ consists of the following elements:
 - $\alpha, \beta, \gamma, \delta$
 - $1, x, x^2, \ldots, x^{n-1}$
 - $\Gamma_0/\gamma, \ldots, \Gamma_\ell/\gamma, \Gamma_{\ell+1}/\delta, \ldots, \Gamma_m/\delta$
 - ... where $\Gamma_i = \beta u_i(x) + \alpha v_i(x) + w_i(x)$
 - $t(x)/\delta, xt(x)/\delta, x^2t(x)/\delta, \ldots, x^{n-2}t(x)/\delta$
Disclosure-freeness of the CRS

- Let t_{adv} be a test polynomial
- $T = t_{\text{adv}}(\vec{\sigma})$ is a multi-variate Laurent polynomial in $\alpha, \beta, \gamma, \delta, x$
- Adversary knows the coefficients of T
 - The total degree of T is less than $4n$
- T may evaluate to 0, because
 - $T \equiv 0$. Such t_{adv} cannot be used to distinguish different CRSs
 - $T(\alpha, \beta, \gamma, \delta, x) = 0$ for the given values of $\alpha, \beta, \gamma, \delta, x$
 - Happens with negligible probability
Laurent polynomials

- A field \mathbb{F}. The variables X_1, \ldots, X_n
- A Laurent monomial has the form $X_1^{d_1} \cdots X_n^{d_n}$, where $d_1, \ldots, d_n \in \mathbb{Z}$
- A Laurent polynomial is a linear combination (over \mathbb{F}) of a finite number of Laurent monomials
- Schwartz-Zippel lemma also applies to Laurent polynomials:
 - Let $(-\delta_i)$ be the least power of X_i in f (let $\delta_i = 0$, if X_i does not have negative powers in f)
 - $f \cdot X_1^{\delta_1} \cdots X_n^{\delta_n}$ is a “normal” polynomial
 - This multiplication can only increase the number of roots
From QAP to NILP:

ProofMatrix\((a_0, \ldots, a_\ell, (a_{\ell+1}, \ldots, a_m))\)

- Find the private polynomial \(h\) of degree \(\leq (n - 2)\), satisfying
 \[
 \left(\sum_{i=0}^{m} a_i u_i(X)\right) \cdot \left(\sum_{i=0}^{m} a_i v_i(X)\right) = \left(\sum_{i=0}^{m} a_i w_i(X)\right) + h(X)t(X)
 \]

- Pick \(r, s \leftarrow \mathbb{F}\), let \(\Pi\bar{\sigma} = (A, B, C)\), where
 \[
 A = \alpha + \sum_{i=0}^{m} a_i u_i(x) + r\delta \\
 B = \beta + \sum_{i=0}^{m} a_i v_i(x) + s\delta
 \]
 (make use of \(1, x, \ldots, x^{n-1}\) in the CRS)
 \[
 C = \sum_{i=\ell+1}^{m} a_i \frac{\Gamma_i}{\delta} + h(x)\frac{t(x)}{\delta} + sA + rB - rs\delta
 \]
 (This part uses \(t(x)/\delta, \ldots, x^{n-2}t(x)/\delta\) in the CRS)
From QAP to NILP: Test\((a_0, \ldots, a_\ell)\) and simulation

- Test returns a single polynomial, corresponding to the test

\[
A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \frac{\Gamma_i}{\gamma} \cdot \gamma + C \cdot \delta
\]

- To simulate a proof, randomly generate \(A, B\) and compute \(C\) so, that the previous equation is satisfied
 - \(C\) can be computed with the values in \(\vec{\tau}\). Computation does not have to be linear
 - We have perfect zero-knowledge: in the real proof, \(A\) and \(B\) are also uniformly distributed
Correctness

\[A \cdot B = \left(\alpha + \sum_{i=0}^{m} a_i u_i(x) + r\delta \right) \cdot \left(\beta + \sum_{i=0}^{m} a_i v_i(x) + s\delta \right) = \]

\[\alpha \cdot \beta + \left(\sum_{i=0}^{m} a_i (\beta u_i(x) + \alpha v_i(x)) \right) + \left(\sum_{i=0}^{m} a_i u_i(x) \right) \cdot \left(\sum_{i=0}^{m} a_i v_i(x) \right) + \]

\[r\delta B + s\delta A - rs\delta^2 = \alpha \cdot \beta + \sum_{i=0}^{m} a_i \Gamma_i + h(x)t(x) + r\delta B + s\delta A - rs\delta^2 = \]

\[\alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + \left(\sum_{i=\ell+1}^{m} a_i \frac{\Gamma_i}{\delta} + h(x) \frac{t(x)}{\delta} + sA + rB - rs\delta \right) \delta = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta \]
Soundness

- The row of Π corresponding to C contains a_i, $(\ell + 1 \leq i \leq m)$ as the coefficients for $\frac{\Gamma_i}{\delta}$
- But that’s for an honest P only. We have to show that whatever A, B, C are, these a_i must occur there
- We start from the Test equation, where A, B, C are unknown linear combinations of elements in CRS
- Think of it as the equality between Laurent polynomials with variables $\alpha, \beta, \gamma, \delta, x$
- From the coefficients, find $a_{\ell+1}, \ldots, a_m$, such that
 \[
 \left(\sum_{i=0}^{m} a_i u_i(X) \right) \cdot \left(\sum_{i=0}^{m} a_i v_i(X) \right) \equiv \left(\sum_{i=0}^{m} a_i w_i(X) \right) \pmod{t(X)}
 \]
Equations

\[A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \frac{\Gamma_i}{\gamma} \cdot \gamma + C \cdot \delta \]

\[\Gamma_i = \beta u_i(x) + \alpha v_i(x) + w_i(x) \]

\[A = A_\alpha \alpha + A_\beta \beta + A_\gamma \gamma + A_\delta \delta + A(x) + \sum_{i=0}^{\ell} A_i \Gamma_i/\gamma + \sum_{i=\ell+1}^{m} A_i \Gamma_i/\delta + A_h(x) t(x)/\delta \]

\[B = B_\alpha \alpha + B_\beta \beta + B_\gamma \gamma + B_\delta \delta + B(x) + \sum_{i=0}^{\ell} B_i \Gamma_i/\gamma + \sum_{i=\ell+1}^{m} B_i \Gamma_i/\delta + B_h(x) t(x)/\delta \]

\[C = C_\alpha \alpha + C_\beta \beta + C_\gamma \gamma + C_\delta \delta + C(x) + \sum_{i=0}^{\ell} C_i \Gamma_i/\gamma + \sum_{i=\ell+1}^{m} C_i \Gamma_i/\delta + C_h(x) t(x)/\delta \]
Coefficient of α^2

\[A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta \]

- 0 in RHS
- $A_\alpha B_\alpha$ in LHS
 - Γ_i also contains α, but always comes with γ^{-1} or δ^{-1}
 - There is no monomial $\alpha \gamma$ or $\alpha \delta$ in A or B
- Hence $A_\alpha B_\alpha = 0$. Either $A_\alpha = 0$ or $B_\alpha = 0$
- W.l.o.g. $B_\alpha = 0$
Equations

\[A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta \]

\[\Gamma_i = \beta u_i(x) + \alpha v_i(x) + w_i(x) \]

\[A = A_\alpha \alpha + A_\beta \beta + A_\gamma \gamma + A_\delta \delta + A(x) + \]
\[\sum_{i=0}^{\ell} A_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} A_i \Gamma_i / \delta + A_h(x)t(x)/\delta \]

\[B = B_\beta \beta + B_\gamma \gamma + B_\delta \delta + B(x) + \]
\[\sum_{i=0}^{\ell} B_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} B_i \Gamma_i / \delta + B_h(x)t(x)/\delta \]

\[C = C_\alpha \alpha + C_\beta \beta + C_\gamma \gamma + C_\delta \delta + C(x) + \]
\[\sum_{i=0}^{\ell} C_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} C_i \Gamma_i / \delta + C_h(x)t(x)/\delta \]
Coefficient of $\alpha \beta$

- 1 in RHS
- $A_\alpha B_\beta$ in LHS
 - Again, cannot introduce monomial $\alpha \beta$ through Γ_i
- Hence $A_\alpha B_\beta = 1$
- W.l.o.g. $A_\alpha = 1$ and $B_\beta = 1$
 - Otherwise, rescale coefficients of A by $1/A_\alpha$ and coefficients of B by $1/B_\beta$
 - This does not change the LHS nor the RHS of the Test equation
\begin{align*}
A \cdot B &= \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta \\
\Gamma_i &= \beta u_i(x) + \alpha v_i(x) + w_i(x) \\
A &= \alpha + A \beta \gamma + A \gamma \alpha + A \delta \delta + A(x) + \\
&\quad \sum_{i=0}^{\ell} A_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} A_i \Gamma_i / \delta + A_h(x) t(x) / \delta \\
B &= \beta + B \gamma \gamma + B \delta \delta + B(x) + \\
&\quad \sum_{i=0}^{\ell} B_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} B_i \Gamma_i / \delta + B_h(x) t(x) / \delta \\
C &= C \alpha \alpha + C \beta \beta + C \gamma \gamma + C \delta \delta + C(x) + \\
&\quad \sum_{i=0}^{\ell} C_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} C_i \Gamma_i / \delta + C_h(x) t(x) / \delta
\end{align*}
Coefficient of β^2

- 0 in RHS
- A_β in LHS
 - No contribution from the coefficients of Γ_i
- Hence $A_\beta = 0$
Equations

\[
A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta
\]

\[
\Gamma_i = \beta u_i(x) + \alpha v_i(x) + w_i(x)
\]

\[
A = \alpha + A \gamma \gamma + A \delta \delta + A(x) +
\sum_{i=0}^{\ell} A_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} A_i \Gamma_i / \delta + A_h(x) t(x) / \delta
\]

\[
B = \beta + B \gamma \gamma + B \delta \delta + B(x) +
\sum_{i=0}^{\ell} B_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} B_i \Gamma_i / \delta + B_h(x) t(x) / \delta
\]

\[
C = C_\alpha \alpha + C_\beta \beta + C_\gamma \gamma + C_\delta \delta + C(x) +
\sum_{i=0}^{\ell} C_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} C_i \Gamma_i / \delta + C_h(x) t(x) / \delta
\]
Coefficient of δ^{-2}
(with constants α, β, x)

- 0 in RHS
- In LHS, it is
 \[
 \left(A_h(x)t(x) + \sum_{i=\ell+1}^{m} A_i \Gamma_i \right) \cdot \left(B_h(x)t(x) + \sum_{i=\ell+1}^{m} B_i \Gamma_i \right)
 \]
- One of the factors is 0
- W.l.o.g. $B_h(x)t(x) + \sum_{i=\ell+1}^{m} B_i \Gamma_i = 0$
Equations

\[A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta \]

\[\Gamma_i = \beta u_i(x) + \alpha v_i(x) + w_i(x) \]

\[A = \alpha + A_{\gamma} \gamma + A_{\delta} \delta + A(x) + \]
\[\sum_{i=0}^{\ell} A_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} A_i \Gamma_i / \delta + A_h(x) t(x) / \delta \]

\[B = \beta + B_{\gamma} \gamma + B_{\delta} \delta + B(x) + \sum_{i=0}^{\ell} B_i \Gamma_i / \gamma \]

\[C = C_{\alpha} \alpha + C_{\beta} \beta + C_{\gamma} \gamma + C_{\delta} \delta + C(x) + \]
\[\sum_{i=0}^{\ell} C_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} C_i \Gamma_i / \delta + C_h(x) t(x) / \delta \]
Coefficient of δ^{-1}
(with constants α, β, γ, x)

- 0 in RHS
- In LHS, it is
 \[
 \left(A_h(x)t(x) + \sum_{i=\ell+1}^{m} A_i \Gamma_i \right) \cdot \left(\beta + B\gamma \gamma + B(x) + \sum_{i=0}^{\ell} B_i \Gamma_i / \gamma \right)
 \]
- One of the factors is 0
- The right factor is not 0
- Hence $A_h(x)t(x) + \sum_{i=\ell+1}^{m} A_i \Gamma_i = 0$
Equations

\[A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta \]

\[\Gamma_i = \beta u_i(x) + \alpha v_i(x) + w_i(x) \]

\[A = \alpha + A_\gamma \gamma + A_\delta \delta + A(x) + \sum_{i=0}^{\ell} A_i \Gamma_i / \gamma \]

\[B = \beta + B_\gamma \gamma + B_\delta \delta + B(x) + \sum_{i=0}^{\ell} B_i \Gamma_i / \gamma \]

\[C = C_\alpha \alpha + C_\beta \beta + C_\gamma \gamma + C_\delta \delta + C(x) + \sum_{i=0}^{\ell} C_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} C_i \Gamma_i / \delta + C_h(x) t(x) / \delta \]
Coefficients of γ^{-2}
(with constants α, β, x)

- 0 in RHS
- In LHS, it is

$$\left(\sum_{i=0}^{\ell} A_i \Gamma_i\right) \cdot \left(\sum_{i=0}^{\ell} B_i \Gamma_i\right)$$

- One of the factors is 0
- W.l.o.g. $\sum_{i=0}^{\ell} A_i \Gamma_i = 0$
Equations

\[
A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta
\]

\[
\Gamma_i = \beta u_i(x) + \alpha v_i(x) + w_i(x)
\]

\[
A = \alpha + A\gamma \gamma + A\delta \delta + A(x)
\]

\[
B = \beta + B\gamma \gamma + B\delta \delta + B(x) + \sum_{i=0}^{\ell} B_i \Gamma_i / \gamma
\]

\[
C = C_\alpha \alpha + C_\beta \beta + C_\gamma \gamma + C_\delta \delta + C(x) + \sum_{i=0}^{\ell} C_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} C_i \Gamma_i / \delta + C_h(x) t(x) / \delta
\]
Coefficients of γ^{-1} (with constants α, β, x)

- 0 in RHS
- In LHS, it is
 \[
 \left(\sum_{i=0}^{\ell} B_i \Gamma_i\right) \cdot (\alpha + A_\delta \delta + A(x))
 \]
- One of the factors is 0
- The right factor is not 0
- Hence $\sum_{i=0}^{\ell} B_i \Gamma_i = 0$
Equations

\[A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta \]

\[\Gamma_i = \beta u_i(x) + \alpha v_i(x) + w_i(x) \]

\[A = \alpha + A_{\gamma} \gamma + A_{\delta} \delta + A(x) \]

\[B = \beta + B_{\gamma} \gamma + B_{\delta} \delta + B(x) \]

\[C = C_{\alpha} \alpha + C_{\beta} \beta + C_{\gamma} \gamma + C_{\delta} \delta + C(x) + \]

\[\sum_{i=0}^{\ell} C_i \Gamma_i/\gamma + \sum_{i=\ell+1}^{m} C_i \Gamma_i/\delta + C_h(x) t(x) / \delta \]
Coefficients of $\beta \gamma$ and $\alpha \gamma$

- 0 and 0 in RHS
- A_γ and B_γ in LHS
- Hence these coefficients are equal to 0
Equations

\[
A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta
\]

\[
\Gamma_i = \beta u_i(x) + \alpha v_i(x) + w_i(x)
\]

\[
A = \alpha + A \delta \delta + A(x)
\]

\[
B = \beta + B \delta \delta + B(x)
\]

\[
C = C_{\alpha} \alpha + C_{\beta} \beta + C_{\gamma} \gamma + C_{\delta} \delta + C(x) + \\
\sum_{i=0}^{\ell} C_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} C_i \Gamma_i / \delta + C_h(x) t(x) / \delta
\]
Coefficients of α and β
(with constant x)

$\alpha : \quad B(x) = \sum_{i=0}^{\ell} a_i v_i(x) + \sum_{i=\ell+1}^{m} C_i v_i(x)$

$\beta : \quad A(x) = \sum_{i=0}^{\ell} a_i u_i(x) + \sum_{i=\ell+1}^{m} C_i u_i(x)$

Define $a_i = C_i$ for $\ell + 1 \leq i \leq m$
Equations

\[
A \cdot B = \alpha \cdot \beta + \sum_{i=0}^{\ell} a_i \Gamma_i + C \cdot \delta \\
\Gamma_i = \beta u_i(x) + \alpha v_i(x) + w_i(x) \\
A = \alpha + A\delta \delta + \sum_{i=0}^{m} a_i u_i(x) \\
B = \beta + B\delta \delta + \sum_{i=0}^{m} a_i v_i(x) \\
C = C_\alpha \alpha + C_\beta \beta + C_\gamma \gamma + C_\delta \delta + C(x) + \\
\sum_{i=0}^{\ell} C_i \Gamma_i / \gamma + \sum_{i=\ell+1}^{m} a_i \Gamma_i / \delta + C_h(x) t(x) / \delta
\]
Coefficients of $1, x, x^2, \ldots$

i.e. take $\alpha = \beta = \gamma = \delta = 0$

\[
\text{RHS} = \sum_{i=0}^{\ell} a_i w_i(x) + \sum_{i=\ell+1}^{m} a_i w_i(x) + C_h(x)t(x)
\]

\[
\text{LHS} = \left(\sum_{i=0}^{m} a_i u_i(x)\right) \cdot \left(\sum_{i=0}^{m} a_i v_i(x)\right)
\]

Hence $(a_{\ell+1}, \ldots, a_m) = (C_{\ell+1}, \ldots, C_m)$ is a witness
A notation for exponentiation

- Pairing-based setup:
 - Cyclic groups G_1, G_2, G_T of size p;
 - Pairing $\hat{e} : G_1 \times G_2 \rightarrow G_T$;
 - Groups generated by $g, h, \hat{e}(g, h)$

- Let $x \in \mathbb{Z}_p$. Denote

\[
\begin{align*}
[x]_1 &= g^x \\
[x]_2 &= h^x \\
[x]_T &= \hat{e}(g, h)^x
\end{align*}
\]
From NILP to NIZK proof for QAP

The CRS
- $[\alpha]_1, [\beta]_1, [\beta]_2, [\gamma]_2, [\delta]_1, [\delta]_2$
- $[1]_1, [x]_1, [x^2]_1, \ldots, [x^{n-1}]_1, [1]_2, [x]_2, [x^2]_2, \ldots, [x^{n-1}]_2$
- $[\Gamma_0/\gamma]_1, \ldots, [\Gamma_\ell/\gamma]_1, [\Gamma_{\ell+1}/\delta]_1, \ldots, [\Gamma_m/\delta]_1$
- $[t(x)/\delta]_1, [xt(x)/\delta]_1, [x^2t(x)/\delta]_1, \ldots, [x^{n-2}t(x)/\delta]_1$

Proof
$[A]_1, [B]_2, [C]_1$. The elements of proof matrix are used as exponents.

Verification
$$\hat{\epsilon}([A]_1, [B]_2) \overset{?}{=} \hat{\epsilon}([\alpha]_1, [\beta]_2) \cdot \hat{\epsilon}(\prod_{i=0}^{\ell} [\Gamma_i/\gamma]_1^{a_i}, [\gamma]_2) \cdot \hat{\epsilon}([C]_1, [\delta]_2)$$
Fixed-base multi-exponentiation

Task: Compute \(g_1^{x_1} \cdots g_n^{x_n} \)

\(g_1, \ldots, g_n \) are constants. \(x_1, \ldots, x_n \) are \(k \)-bit long variables.

Precomputation

\(g_J \leftarrow \prod_{i \in J} g_i \) for all \(J \subseteq \{1, \ldots, n\} \)

Computation

\(\text{res} := 1 \)

for \(i := k - 1 \) down to 0 do

\(\text{res} := \text{res}^2 \)

\(J \leftarrow \{j \mid i\text{-th bit of } g_j \text{ is 1}\} \)

\(\text{res} := \text{res} \cdot g_J \)
Security proof

- ... in generic bilinear group model
- Completeness — obvious
- Zero-knowledge — use trapdoor to simulate. Hence obvious
- Soundness
 - CRS does not tell the adversary anything interesting
 - Due to disclosure-freeness. Any test the adversary can do can be expressed as a quadratic polynomial in the elements of CRS
 - As CRS is uninteresting, the adversary generates $[A]_1$, $[B]_2$, $[C]_1$ independently of the elements of CRS
 - These can only be generated as linear combinations of the elements of CRS in G_1 / G_2
 - The coefficients can be found from the adversary’s calls
 - The witness can be extracted as before