MPC and Security from Replication

Pille Pullonen

November 19, 2019

CYBERNETICA
Security from Replication

- Cut-and-Choose
- MASCOT triple privacy amplification
How Else can we use Replication?

- **Assume:**
 - There are $n + 1$ parties who want to compute something
 - They know of a n-party passively secure protocol for MPC
 - Secure against one cheating party
 - That preserves input privacy until the output round
 - They are each willing to believe that at most one of the other parties might cheat
 - Can they compute together?
 - Yes! Just use the n-party protocol. Assuming everyone can give inputs to there

- **What if the cheater is active?**
- **We can run $n + 1$ copies of the passive protocol each time leaving one party out**
- **At least one of the runs gives the correct result**
- **Need something to verify all runs before the opening**
- **How to do something like this more efficiently?**
 - How to efficiently replicate the parties?
 - How to do the verification?
Combining MPC Schemes

- How to do the verification for the initial replication idea?
- We need some way to reliably check the values before they are opened
 - Could commit all values and open them
 - This may reveal more than we intend if we reveal the intermediate representation of the secrets
 - For SPDZ we looked at a way of achieving commitments from a modified secret sharing scheme
 - Could switch to some other MPC protocol to securely check equality of all outputs
 - E.g. convert the outputs to some verifiable secret sharing scheme for the final computation
- Switching between MPC protocols is often handy
 - Different operations are efficient or supported
 - Different guarantees provided
 - Different number of parties allowed
 - Different data structures supported
Garbled Circuits Reminder

- Two-party computation
- The garbler generates the garbled circuit by encrypting each gate and sends it to the evaluator
- The evaluator uses oblivious transfer to receive the relevant input keys from the garbler
- The evaluator decrypts the circuit gate-by-gate to come to the output
- Constant rounds of communication
- Works for binary circuits
- Can get active security from cut-and-choose
Three-Party Garbled Circuits with Replication

- Security against one malicious party
- Enhance the two party approach:
 - Split the garbler to two parties
 - The evaluator remains as one party
- The garblers agree on an initial randomness r
- They independently garble the circuit using this randomness
 - The garbled output should be the same
- Evaluator checks that it receives the same garbled circuits from both garblers
- The evaluator evaluates the circuit as usual
- Garbling protocol is secure against cheating evaluator
 - Breaking this means breaking the encryption
- Garbling protocol is also secure against an honest garbler
 - This is sufficient because if one of them misbehaves then the evaluator notices and aborts the protocol
Inputs for Three-Party GC

- Each of the three parties may have their own input
- Inputs x_1, x_2 of the garblers:
 - Both parties commit to all input wire labels
 - For each wire the order of the commitments is permuted
 - Opening them does not reveal if it is 0 or 1 label
 - Each party opens the commitments of their inputs
- Input x_3 of the evaluator:
 - Which garbler should you run OT with to get the keys?
 - We can avoid OT in the three party case
 - Let $x_3 = x_4 \oplus x_5$ be secret shared as x_4 and x_5
 - Instead of $f(x_1, x_2, x_3)$ compute (and garble)
 \[f'(x_1, x_2, x_4, x_5) = f(x_1, x_2, x_4 \oplus x_5) \]
 - Evaluator sends x_4 to one garbler and x_5 to the other
 - The garblers open the respective commitments
 - The evaluator learns the order of the commitment permutations for its inputs from both garblers and checks that they are the same
 - Private because seeing x_4 or x_5 does not leak x_3
 - Correctness because commitments and their permutation order was verified
Compiler for MPC

- Take one protocol as input
- Give a changed protocol as an output
 - Passive security to active security
 - Passive protocols are easier to design
 - Passive security is easier to prove
 - E.g. GMW compiler where each step of the semi-honest protocol is enhanced with zero-knowledge proof of correctness
 - E.g. the two-party passive garbled circuits to three-party active
 - From security with abort to complete fairness
- Compilers can have different generality
 - In terms of which protocols work as input
 - In terms of how many new requirements they introduce
Passive to Active with Replication

- Input: Any passively secure $n \geq 3$ party protocol
- Output: Actively secure n party protocol
- Complier idea:
 - Each party, message and computation is replicated
 - Receiving parties check consistency
Compiler Details: Setup

- Real parties $\mathcal{P}_1, \ldots, \mathcal{P}_n$
 - e.g. servers really running, may be either honest or corrupted
 - These parties have the inputs
- Virtual parties $\mathbb{P}_1, \ldots, \mathbb{P}_n$
 - These are the parties for the passively secure protocol
 - Each virtual party $\mathbb{P}_i = \{\mathcal{P}_i, \ldots, \mathcal{P}_{i+m-1}\}$ is played by m real parties
- Setup: All parties in \mathbb{P}_i are given an initial randomness r_i for that virtual party
- Input a value x from \mathcal{P}_i:
 - \mathcal{P}_i computes secret shares x_j of x as $x = \sum x_j$
 - For each j : \mathcal{P}_i broadcasts x_j to all parties in \mathbb{P}_j
 - Each virtual party \mathbb{P}_j treats the values x_j as their input
 - Virtual parties execute the input phase of the passively secure protocol with x_j as input of \mathbb{P}_j to obtain $[x_j]$ and compute $[x] = \sum [x_j]$ to get the desired input in the representation of the passively secure protocol
 - Alternatively we can say that the initial function $f(x)$ has been replaced by $f'(x_1, \ldots, x_n) = f(\sum x_j)$ in the computation phase
• **Computation:**
 • The virtual parties execute the protocol using randomness r_i
 • For each P_i the real parties P_i, \ldots, P_{i+m-1} execute the computations of that party and send all messages
 • For each message exchange from P_i to P_j each real party in P_i sends the message to each real party in P_j
 • Each real party in P_j checks that it received the same message from all parties in P_i
 • Abort if the messages differ (or some message is not received)
 • **Output:** Output the values published in the computation phase
 • Assuming none of the message sending checks failed
Intuition of the Compiler Correctness

- Real parties in \mathbb{P}_i share the initial randomness r_i
 - This is the only randomness they use in their computations
- Real parties in \mathbb{P}_i all know the inputs x_i of the virtual party
- If they receive the same messages m and use randomness r_i then they always compute the same messages
 - Each local computation is kind of deterministic function $f(m, x, r_i)$
- If some party cheats then we can see a difference between the messages of honest and corrupted parties
 - Sending wrong messages is the only cheating that might break the protocol
 - The only other thing to do is to do any local computations with the values received in the protocol
 - But passively secure protocol has to be secure against such semi-honest behaviour anyway
- The protocol fails if we detect the difference in the messages
- How to choose the virtual parties to ensure detection?
How to Create Virtual Parties?

- Real parties are distributed evenly
- Each virtual party is made up of m real parties
- Need to ensure that at least one of these real parties is honest
- Therefore if we allow t actively corrupted parties then $m > t$
- Most efficient if $m = t + 1$
- Each real party participates in m virtual parties
- If t real parties are corrupted, then adversary can see at most tm values
- Need the passively secure protocol to be secure against tm (or $t^2 + t$) corruptions
- $n \geq t^2 + t + 1$ means that $t < \frac{n}{2}$ we always have honest majority in the actively secure protocol
Example

- Three parties
- Additive secret sharing in a ring \mathbb{Z}_{2k}
- Real parties $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$
- $\mathcal{P}_i = \{\mathcal{P}_{i-1}, \mathcal{P}_{i+1}\}$
- Setup: parties $\mathcal{P}_{i-1}, \mathcal{P}_{i+1}$ in \mathcal{P}_i share initial randomness r_i
- Passive protocol is secure against two corrupted parties
- Want a compiled protocol that is secure against one actively corrupted party
 - $t = 1$
 - $t^2 + t = 2$
 - $n = 3 \geq t^2 + t + 1 = 1 + 1 + 1 = 3$
 - Hence these parameters are suitable for the compiler construction
Example: Passively Secure Protocol \(\mod 2^k \)

- **Addition** \([x + y] = [x] + [y] = (x_1 + y_1, \ldots, x_n + y_n)\)
- **Adding a public value** \([x + c] = [x] + c = (x_1 + c, \ldots, x_n)\)
- **Multiplication by a public constant**
 \([c \cdot x] = c \cdot [x] = (c \cdot x_1, \ldots, c \cdot x_n)\)
- **Sharing a value** - Party chooses random \(x_1, \ldots, x_{n-1}\) and computes \(x_n = x - \sum_{i=1}^{n-1} x_i\), sends \(x_i\) to party \(i\)
- **Publishing a value** - each party sends their share \(x_i\), parties compute \(x = \sum x_i\)
- **Multiplication** \([w] = [x \cdot y] = [x] \cdot [y]\) with Beaver triple \([a], [b], [c]\) where \(c = ab\)
 - Compute \([e] = [x] - [a]\) and \([d] = [y] - [b]\)
 - Publish \(e = \sum e_i\) and \(d = \sum d_i\)
 - Compute \([w] = [c] + e \cdot [b] + d \cdot [a] + ed\)
Example: Compiled Protocol

• Input:
 • Each P_i shares $x^{(i)} = x_1^{(i)} + x_2^{(i)} + x_3^{(i)}$
 • $x_j^{(i)}$ is broadcasted to P_j
 • Each P_i receives $x_i^{(1)}_{i-1}, x_i^{(2)}_{i-1}, x_i^{(3)}_{i-1}$ on behalf of P_{i-1} and
 $x_i^{(1)}_{i+1}, x_i^{(2)}_{i+1}, x_i^{(3)}_{i+1}$ on behalf of P_{i+1}
 • The P_j already have a valid sharing of the inputs $x^{(i)}$

• Local computations:
 • Parties P_{i-1}, P_{i+1} in P_i carry out the computations of this party using shares x_i and the shared randomness r_i

• Sending messages:
 • Parties P_{i-1}, P_{i+1} in P_i send a message to P_j by sending it to
 P_{j-1}, P_{j+1}
 • Receiving parties P_{j-1}, P_{j+1} check that they received the same message from P_{i-1} and P_{i+1}

• Output: Each party outputs the published values
Sending Messages

- Parties P_{i-1}, P_{i+1} in P_i send a message to P_j by sending it to P_{j-1}, P_{j+1}
 - For three parties $i = j + 1$ or $i = j - 1$ if $i \neq j$
 - Some messages are unnecessary because a real party sends a message to itself
- In general replicated messages are the main component that ensures security
- But do we need to check every message on the go?
 - If we don’t then errors may propagate in the computation
 - But it is still sufficient if we catch them before revealing anything important
 - Most messages, e.g. the multiplication openings in the example contain randomness
- In general, we don’t need to check every message if the passively secure protocol preserves privacy also for active adversaries up to the opening phase
- If we postpone the check then we can also postpone sending the replicated messages
Introducing the Brains

• For every P_i set one real party to be the brain B_i
 • Other parties will be kind of silent partners

• Sending messages:
 • Party B_i in P_i sends a message m to P_j by sending it to P_{j-1}, P_{j+1}
 • Silent parties $P_i \setminus \{B_i\}$ simply compute and store the message m
 • Receiving parties P_{j-1}, P_{j+1} store this message for later

• Opening
 • Need to verify the sent messages before opening anything important
 • The then send the opening messages and verify them
Sending Messages with Brains

- Each party, message and computation is replicated
- Receiving parties check consistency
- Postponing the check:
 - Store the messages
 - Hash the transcript
Transcript Verification

- Each silent party has stored the messages x_1, \ldots, x_ℓ that the brain has sent for a given virtual party
- Each receiving party has stored all messages received from the brain
- Before the Opening phase:
 - Each pair P_i, P_j runs the check
 - How to implement the check?
 - All real parties in the sender side simply send their respective messages to the real parties in the receiver
- Three party case:
 - Let $h_{(i,j)}$ be the set of messages sent from P_i to P_j
 - For P_{i+1} where P_i is the brain P_i keeps the received messages $h_{i,i+1}$ and $h_{i-1,i+1}$
 - For P_{i-1} P_i keeps $h_{i-1,i}, h_{i,i-1}, h_{i-1,i+1}$
 - For P_{i-1} $h_{i+1,i-1}$ is not necessary because these messages are sent by P_i
Three Party Transcript Verification

- P_1: received $h_{1,2}, h_{3,2}, h_{1,3}$, sent $h_{3,1}, h_{3,2}$, discarded $h_{2,3}$
- P_2: received $h_{2,3}, h_{1,3}, h_{2,1}$, sent $h_{1,2}, h_{1,3}$, discarded $h_{3,1}$
- P_3: received $h_{3,1}, h_{2,1}, h_{3,2}$ sent $h_{2,3}, h_{2,1}$, discarded $h_{1,2}$
- Each $h_{i,j}$ is kept by two different parties that need to verify it
- P_i needs to locally check that the copies of $h_{i-1,i+1}$ are equal
- Party P_{i+1} can send $h_{i,j}$ to the intended receivers P_{j-1} and P_{j+1}. One of them is always either itself or the original sender of the message, so only one desired receiver remains:
 - If the original sender P_{i-1} of the message was corrupted then both checkers are honest. If the sender corrupted some message then P_{i+1} still computed it correctly so the checker notices the difference.
 - If the transcript sender P_{i+1} is corrupted then the original sender P_{i-1} was honest and an honest checker can notice the difference.
Three Party Transcript Verification II

• If the checker is corrupted then the transcripts matches but it can still call the check failed. But it could also deliberately fail the check independently of which algorithm we use.

• No privacy risk because the messages are sent to their intended receiver anyway
 • If this sending is problematic then the initial protocol without the brains has to be broken

• For three parties the verification is sufficient if the intended senders simply send their transcript to the intended receivers to check
 • No need for more complicated checks of equality, e.g. everyone committing to their transcript and then opening the commitments pairwise

• Note that we can actually combine the $h_{i,i-1}$ and $h_{i,i+1}$ because they are checked by the same real party
General Transcript Verification

- Let $h_{(i,j)}$ be the set of messages sent from P_i to P_j
 - Each real silent party P_ℓ in P_i keeps the computed messages $h_{(i,j),\ell}$. Whereas $h_{(i,j),\ell_1}$ and $h_{(i,j),\ell_2}$ may differ
 - For verification each P_ℓ broadcasts his $h_{(i,j),\ell}$ to P_j.
 - Initially P_ℓ sent these messages during the protocol, nothing new is leaked if we send them during the verification
- There is at least one pair of honest real parties for each pair P_i and P_j
 - For each send from P_i to P_j there exists some pair $P_{i',i} \in P_i$ and $P_{i',j} \in P_j$ such that both $P_{i',i}$ and $P_{i',j}$ are honest
- For each transcript $h_{i,j}$ verification:
 - If the brain was cheating then the honest receiver and honest transcript sender find the mismatch in the protocol
 - If all transcript senders are cheating then the brain was honest and the honest receiver checks the cheated transcripts against the honest stream of messages that it initially received
 - Hence, some pairwise check fails if there is any cheating
 - Hence, it suffices if all real parties simply send their transcripts to the intended receivers
Efficiency and Security of the Verification

• If all messages are sent as is then the overhead in communication is large
 • Same as the protocol before introducing brains

• Using a cryptographic collision resistant hash reduces communication to simply sending one hash for each pairwise verification
 • But requires more local computation and introduces a cryptographic assumption
 • Can reduce storage if we build a hash tree of the transcript instead of storing all messages

• Computing a random linear combination of all the messages reduces the communication to just one ring element per pairwise verification
 • Provides statistical security
 • But requires us to store all of the transcript because the random combination must be chosen later
Solving the Setup with Brains

- Setup: We need shared randomness r_i for parties in P_i
- We can let the brain choose it
- The brain multicasts it to the rest of P_i
- If the brain is honest then this is ok
- If the brain is not honest then r_i might be crafted to reveal information
 - But the honest party in P_i still uses it as the randomness and computes values based on this
 - The adversary already knows all secrets of P_i if the brain is corrupted
 - So this is allowed as long as messages before the transcript verification don’t leak private information even if there is cheating
 - This property has been called weak privacy/active privacy
 - Not a very common definition
 - But most passive MPC protocols have this property
 - The use of brains has this precondition anyway
Security of the Compiler

- The compiler is information theoretic
 - Just uses secret sharing and replication based verification
 - No new security assumptions introduced
 - Assuming the transcript verification does not introduce them
 - Verification could be implemented using a collision resistant hash function

- The resulting actively secure protocol has the same security assumption as the initial passively secure one
 - Notably if the passively secure protocol was information theoretically secure then so is the resulting active protocol
 - But the number of corruptions that the active protocol tolerates is less than the passive protocol allows

- WARNING: Proper security claims requires a proof of universal composability
 - Have to build a simulator for the new construction
 - Your simulator would use a simulator for the passively secure protocol to carry out the steps of the passively secure protocol
Efficiency of the Construction

- Simple echo broadcast (multicast) is still sufficient
- Each passive protocol message is replaced by m messages
- Each share is stored in m copies
- Computation overhead is also m times if each real party plays the role of m virtual parties
- Input round requires an extra layer of secret sharing
- Verification overhead depends on the choices
• Generating the triple
• Verifying the correctness of the triple
• Essentially could use the compiler on the preprocessing method to get a suitable preprocessing
• In the following we’ll look at more efficient ways to do preprocessing for three-party computation over \mathbb{Z}_{2^k}
 • Turning our focus to the way how the real parties see the protocols of the compiler
Additive Replicated Secret Sharing

- Consider the three party case with at most one corrupted party.
- We have $x = x_1 + x_2 + x_3$.
- Each party P_i is given x_{i-1}, x_{i+1}.
- $\lbrack x \rbrack = ((x_2, x_3), (x_1, x_3), (x_1, x_2))$.
- Opening a value:
 - P_i sends x_{i-1} to P_{i-1} and x_{i+1} to P_{i+1}.
 - Each P_i receives x_i from both P_{i+1} and P_{i-1} and checks that it is the same.
 - Each party outputs $x_1 + x_2 + x_3$.
- Adding a constant:
 $\lbrack x \rbrack + c = ((x_2, x_3), (x_1 + c, x_3), (x_1 + c, x_2))$.
- Addition:
 $\lbrack x + y \rbrack = ((x_2+y_2, x_3+y_3), (x_1+y_1, x_3+y_3), (x_1+y_1, x_2+y_2))$.
- Generating a random share: P_i picks r_{i-1} and sends it to P_{i+1}, $\lbrack r \rbrack = ((r_2, r_3), (r_1, r_3), (r_1, r_2))$.

28/55
• Generating a random value:
 • Each party \mathcal{P}_i picks r_{i-1} randomly
 • \mathcal{P}_i sends r_{i-1} to \mathcal{P}_{i+1}
 • \mathcal{P}_i receives r_{i+1} from \mathcal{P}_{i-1}
 • \mathcal{P}_i sets (r_{i-1}, r_{i+1}) as its shares of $[r]$

• If at most one party is corrupted then at least two r_i are uniformly randomly chosen
• and the corrupted party can not fix the value of r
Optimistic Multiplication

Input: \([x], [y]\)

Output: \([xy]\)

- Optimistic multiplication:
 - Generate a random sharing \([r]\)
 - \(P_i\) computes \(u_{i+1} = x_{i+1}y_{i+1} + x_{i+1}y_{i-1} + x_{i-1}y_{i+1} + r_{i-1}\)
 - \(P_i\) sends \(u_{i+1}\) to \(P_{i-1}\) and receives \(u_{i-1}\) from \(P_{i+1}\)
 \([u]\) = \(((u_2, u_3), (u_1, u_3), (u_1, u_2))\)
 - \([xy]\) = \([u] - [r]\)

- Correctness:
 - \(u_1 = x_1y_1 + x_1y_2 + x_2y_1 + r_2\)
 - \(u_2 = x_2y_2 + x_2y_3 + x_3y_2 + r_3\)
 - \(u_3 = x_3y_3 + x_3y_1 + x_1y_3 + r_1\)

\[
\begin{align*}
 u - r &= x_1y_1 + x_1y_2 + x_2y_1 + r_2 - r_1 + \\
 &\quad x_2y_2 + x_2y_3 + x_3y_2 + r_3 - r_2 + \\
 &\quad x_3y_3 + x_3y_1 + x_1y_3 + r_1 - r_3 \\
 &= (x_1 + x_2 + x_3)(y_1 + y_2 + y_3)
\end{align*}
\]

- Optimistic because it is possible to cheat in this protocol
The additive sharing can be over different data structures

- All operations remain the same, but the shares and the secret value are from some ring or field
- All operations are in that ring or field

In the following we need:

- $[x]_{2^k}$ for computations in a ring \mathbb{Z}_{2^k}
- $[x]_p$ for computations in a field \mathbb{Z}_p
- $[x]_\mathbb{Z}$ for the case when the shares are integers
 - Described in the following slides
Additive Replicated Secret Sharing over \mathbb{Z}

- Inputs $x \in \mathbb{Z}_{2^k}$ shared over integers with $k + \lambda$-bit initial shares
 - Security parameter λ ensures that the shares of two different values are statistically close to each other
- Sharing x to $[x]_{\mathbb{Z}}$:
 - P_i generates $x_1, x_2 \leftarrow \{0, \ldots, 2^{k+\lambda} - 1\}$, sets $x_3 = x - x_1 - x_2$. Sends x_{j-1}, x_{j+1} to P_j
- Adding a constant, addition and multiplication with a constant are the same as for additive replicated secret sharing
 - BUT: The length of the shares may grow larger than $k + \lambda$-bits
 - Because all operations on shares are also over the integers
Optimistic Multiplication over \mathbb{Z}

Input: $[x]_{\mathbb{Z}}, [y]_{\mathbb{Z}}$

Output: $[xy]_{\mathbb{Z}}$

- Generate a random sharing $[r]_{\mathbb{Z}}$ where
 $r_i \in \{0, \ldots, 2^{2\lceil\log B\rceil + \lambda + 2} - 1\}$
 - B is a bound on the shares $x_i, y_i \leq B$
 - r_i are chosen at least λ bits longer than any $x_i y_j$ multiplication

- P_i computes $u_{i+1} = x_{i+1} y_{i+1} + x_{i+1} y_{i-1} + x_{i-1} y_{i+1} + r_{i-1}$

- P_i sends u_{i+1} to P_{i-1} and receives u_{i-1} from P_{i+1}

- Check $|u_i| \leq 2^{2\lceil\log B\rceil + \lambda + 3}$

- $[u] = ((u_2, u_3), (u_1, u_3), (u_1, u_2))$

- $[xy] = [u] - [r]$
Triple Generation with Replicated Sharing

- \(\mathcal{P}_i \) generates \(a_i, b_i \in \mathbb{Z}_{2^k} \) and shares them as \([a_i]_\mathbb{Z}, [b_i]_\mathbb{Z} \)
- Parties compute \([a] = \sum [a_i], [b] = \sum [b_i] \)
- Use optimistic multiplication to compute \([c]_\mathbb{Z} = [a]_\mathbb{Z} \cdot [b]_\mathbb{Z} \)
- Verification of the multiplication:
 - Optimistically generate another triple \([x]_p, [y]_p, [z]_p \)
 - for prime \(p > c \)
 - Interpret \([a]_\mathbb{Z}, [b]_\mathbb{Z}, [c]_\mathbb{Z} \) as triple in \(\mathbb{Z}_p \) for the verification with sacrifice:
 - Pick a random \([r]_p \) and open to \(r \)
 - \([e]_p = r[x] + [a] \)
 - \([d]_p = [y] + [b] \)
 - Open \(e \) and \(d \)
 - Compute \([h]_p = ed - rd[x] - e[y] + r[z] - [c] \)
 - Open \(h \) and verify \(h = 0 \)
 - Set \([a]_{2^k}, [b]_{2^k}, [c]_{2^k} \) by locally reducing the shares of \([a]_\mathbb{Z}, [b]_\mathbb{Z}, [c]_\mathbb{Z} \) to the correct size \(\mod 2^k \)
Correctness of Triple Generation

- Interpret $[a]_{\mathbb{Z}}, [b]_{\mathbb{Z}}, [c]_{\mathbb{Z}}$ as triple in \mathbb{Z}_p
 - We just treat a_i, b_i, c_i as values in \mathbb{Z}_p
- Multiplicative relation:
 - $ab = c$ over the integers means $ab = c \mod p$
 - also $(a_1 + a_2 + a_3)(b_1 + b_2 + b_3) = (c_1 + c_2 + c_3)$
 - $p > c$ hence $p > a, b$ and $ab = c \mod p$ implies $ab = c$ over the integers
- Hence triple verification in \mathbb{Z}_p is usable
- Verification with sacrifice is the same as for the SPDZ case
 - All computation are in a field \mathbb{Z}_p
 - Probability of cheating is the probability of choosing a right r, hence $\frac{1}{p}$
 - Likely need a p significantly bigger than the shares
- Final reducing:
 - We have $(a_1 + a_2 + a_3)(b_1 + b_2 + b_3) = (c_1 + c_2 + c_3)$ holding over the integers
 - Hence $(a_1 + a_2 + a_3)(b_1 + b_2 + b_3) = (c_1 + c_2 + c_3) \mod 2^k$
 - Taking the modulo operations $a_i \mod 2^k, b_i \mod 2^k, c_i \mod 2^k$ of the shares does not invalidate this property
• So we have a way to generate and verify triples \([a]_{2^k}, [b]_{2^k}, [c]_{2^k}\)
• Verification requires generating an extra triple \([x]_p, [y]_p, [z]_p\)
• Essentially generate two triples and discard one
• Can we do it more efficiently?
 • Yes!
 • Generate a set of triples \([a_i]_Z, [b_i]_Z, [c_i]_Z\) optimistically
 • Combine the triples so that we have one valid triple
 • Verify this triple with the check with sacrificing
 • Need one \([x]_p, [y]_p, [z]_p\) for the whole set of real triples
• But how to do the combination?
 • We need some polynomial arithmetic for that
Polynomials

- \(f(x) = \sum_{i=0}^{t} a_i x^i \)
- Usually defined by the coefficients \(a_0, \ldots, a_t \)
- But you can define them by evaluation and value points \((x_j, y_j)\) instead where \(f(x_j) = y_j \)
- Degree \(t \) polynomial is uniquely defined by \(t + 1 \) points in either representation
- It is possible to translate between the representations
 - Either by evaluating the polynomial
 - Or by interpolation
- The equation \(f(x) = \sum_{i=0}^{t} a_i x^i = 0 \) has at most \(t \) different solutions
- It is possible to do arithmetic with polynomials,
- These properties also hold when \(a_i \) at in some finite data structure, e.g. \(\mathbb{Z}_{2^k} \)
Polynomial Interpolation and Evaluation

- It is straightforward to evaluate polynomials in form
 \[f(x) = \sum_{i=0}^{t} a_i x^i \]

- What about the case when polynomial is defined by \((j, f(j))\)?

- In principle we can interpolate to \(\sum_{i=0}^{t} a_i x^i\) representation and then evaluate

- Define \(\delta^N_i(x)\)

 \[\delta^N_i(x) := \prod_{j=1, j \neq i}^{N} \frac{x - j}{i - j} \]

- Interpolation+evaluation can be written as one formula based on the Lagrange interpolation

 \[f(z) := \sum_{j=1}^{t+1} \left(\delta^{t+1}_j(z) \cdot f(j) \right) \]
• Assume that the polynomial is defined by \((j, \llbracket f(j) \rrbracket)\)
• Then
\[
\llbracket f(z) \rrbracket := \sum_{j=1}^{t+1} (\delta_{j}^{t+1}(z) \cdot \llbracket f(j) \rrbracket)
\]
can be computed locally by each party
• \(\delta_{j}^{t+1}(z)\) is a public value
• So the expression is just a linear combination of shares
Idea of Polynomial-based Verification

- We define $f(x)$ and $g(x)$ as polynomials of degree $N - 1$.
 - They are uniquely determined by our triples as $f(i) = a_i$ and $g(i) = b_i$ for $i \in 1, \ldots, N$.
- $h(x) = g(x)f(x)$ is a degree $2N - 2$ polynomial.
 - Need $2N - 1$ points to uniquely define it.
- We set $h(x)$ so that $h(x) = g(x)f(x)$ should hold if $c_i = a_ib_i$.
 - First $i \in \{1, \ldots, N\}$ points: $h(i) = c_i = a_ib_i = f(i)g(i)$
 - For $i \in \{N + 1, \ldots, 2N - 1\}$ we compute $h(i) = f(i)g(i)$ by evaluating $f(i)$ and $g(i)$ and computing the multiplication.
- If $h(x) \neq g(x)f(x)$ then
 - $h(x)$ and $g(x)f(x)$ have at most $2N - 2$ shared points.
 - because $2N - 1$ shared points would already define the same $2N - 2$ degree polynomial, meaning that $h(x) = g(x)f(x)$.
- Verify $h(x) = g(x)f(x)$ by evaluating both sides at a random point z.
 - If $h(x) = g(x)f(x)$ then trivially $h(z) = g(z)f(z)$.
 - Probability of choosing random point z that is the shared point such that $h(z) = g(z)f(z)$ if $h(x) \neq g(x)f(x)$ is $\frac{2N - 2}{p}$.

Batch Verification - Fixing the Polynomials

Input: Set of triples $[a_i]_Z, [b_i]_Z, [c_i]_Z$, interpreted as $[a_i]_p, [b_i]_p, [c_i]_p$

• Combine the triples to check them at once:
 • For $i \in \{1, \ldots, N\}$, define $[f(i)] := [a_i]$ and $[g(i)] := [b_i]$.
 • For $i \in \{N + 1, \ldots, 2N - 1\}$, evaluate the polynomials at point i

\[
[f(i)] := \sum_{j=1}^{N} (\delta^N_j(i) \cdot [a_j]), \text{ and }
\]
\[
[g(i)] := \sum_{j=1}^{N} (\delta^N_j(i) \cdot [b_j])
\]

• For $i \in \{1, \ldots, N\}$, define $[h(i)] := [c_i]$.
• For $i \in \{N + 1, \ldots, 2N - 1\}$, compute $[h(i)] = [f(i)] \cdot [g(i)]$ optimistically.
• Generate random $[z]_p$ and open z.
Batch Verification - Verifying the Polynomials

Last slide: randomness z, hopefully $[h(x)] = [f(x)] \cdot [g(x)]$

- Evaluate the polynomials on the random point z

$$\alpha = [f(z)] := \sum_{j=1}^{N} (\delta_j^N(z) \cdot [f(j)])$$, and

$$\beta = [g(z)] := \sum_{j=1}^{N} (\delta_j^N(z) \cdot [g(j)])$$, and

$$\gamma = [h(z)] := \sum_{j=1}^{2N-1} (\delta_j^{2N-1}(z) \cdot [h(j)])$$

- Run SacrificeCheck ($[\alpha], [\beta], [\gamma]$).
 - Outputs true if $\alpha \beta = \gamma \mod p$

- Allows to sacrifice only one triple to verify many
Batch Verification Analysis

- From the polynomial idea we know that the probability of choosing a random value z that makes $\gamma = \alpha \beta$ if any of the input triples was incorrect is $\frac{2N-2}{p}$.
- The probability that the verification with sacrificing passes if $\gamma \neq \alpha \beta$ is $\frac{1}{p}$.
Triple Generation with Batch Verification

- Generate a set of triples independently:
 - \(P_i \) generates \(a_i, b_i \in \mathbb{Z}_{2^k} \) and shares them as \([a_i]_Z, [b_i]_Z\)
 - Parties compute \([a] = \sum [a_i], [b] = \sum [b_i]\)
 - Use optimistic multiplication to compute \([c]_Z = [a]_Z \cdot [b]_Z\)
- Interpret the triples as triples in \(\mathbb{Z}_p \) and do batch verification
- If the verification succeeds then locally reduce
 \([c]_Z = [a]_Z \cdot [b]_Z\) to \([c]_{2^k} = [a]_{2^k} \cdot [b]_{2^k}\)
• Additive replicated secret sharing with redundant shares:
 • Values are $x \in \mathbb{Z}_{2^k}$
 • Shares as $x_i \in \mathbb{Z}_{2^k+\lambda}$, denoted as $[x]_{2^k+\lambda}$
 • All operations are as for regular additive replicates sharing
• Can be used to check the multiplicative property without computing in a finite field
Share Conversion

- Convert $\lceil x \rceil_{2^k}$ to $\lceil x \rceil_{2^{k+\lambda}}$:
 - No actual conversion, each party just computes with their shares as in $\mathbb{Z}_{2^{k+\lambda}}$
 - This means that likely $\sum x_i \mod 2^{k+\lambda} \neq x$
 - Either $\sum x_i \mod 2^{k+\lambda} = x$ or $\sum x_i \mod 2^{k+\lambda} = x + 2^k$
 - Since our interpretation is that $x \in \mathbb{Z}_{2^k}$ then these two are still suitable representations

- Convert $\lceil x \rceil_{2^{k+\lambda}}$ to $\lceil x \rceil_{2^k}$:
 - Each party locally reduces their share $x_i \mod 2^k$
 - The shared value is preserved because 2^k divides $2^{k+\lambda}$
SPDZ/MASCOT-like Precomputation Verification

Input \([x]_{2^k}, [y]_{2^k}, [z]_{2^k}\) generated with optimistic multiplication

Output True if \(z = xy \mod 2^k\)

- **Verification:**
 - The parties convert the input shares \(([[x], [y], [z]])\) into \(([[x]_{k,\lambda}, [y]_{k,\lambda}, [z]_{k,\lambda}])\).
 - The parties generate a random \([a]_{k,\lambda}\) and execute an optimistic multiplication with \(([[a]_{k,\lambda}, [y]_{k,\lambda})\) to get \([c]_{k,\lambda}\).
 - The parties jointly generate a random \(r \in \mathbb{Z}_{2^\lambda}\).
 - The parties reveal \([e]_{k,\lambda} = r[[x]_{k,\lambda} + [a]_{k,\lambda}\).
 - Check \(r[[z]_{k,\lambda} + [c]_{k,\lambda} - e[[y]_{k,\lambda} ? = 0\)

- Similar ideas are used in SPD\(Z_{2^k}\) for sharing and MASCOT for triple verification with correlated triples

- Can batch many pairwise sacrifices to use one \(r\)
Correctness of the SPDZ-like Verification

• Correctness:
 - \(r(xy) + ay - (rx + a)y = 0 \)

• Security:
 - Both optimistic multiplications can introduce errors
 - Assume \(z = xy + e_z \) and \(c = ay + e_c \) with errors, where \(e_z \neq 0 \pmod{2^k} \)
 - \(r(xy + e_z) + ay + e_c - (rx + a)y = re_z + e_c \mod{2^{k+\lambda}} \)
 - Cheating means that \(re_z + e_c = 0 \pmod{2^{k+\lambda}} \)
 - Let \(e_z = 2^v \cdot b \) where \(b \) is odd and \(2^v < 2^k \)
 - \(re_z = e_c \mod{2^{k+\lambda}} \) gives us \(rb = \frac{e_c}{2^v} \mod{2^{k+\lambda-v}} \) from the properties of the congruence and we know that \(2^v \) must be a factor of \(e_c \)
 - Therefore \(r = \frac{e_c}{2^v b} \mod{2^{k+\lambda-v}} \) because odd \(b \) has a multiplicative inverse \(\mod{2^{k+\lambda-v}} \)
 - \(r \) is determined \(\mod{2^{k+\lambda-v}} \) which is larger than \(\lambda < k + \lambda - v \). Hence \(r \) determined in \(2^\lambda \).
 - \(r \) is uniformly random in \(\lambda \)-bit number
 - Probability of choosing \(r \) that allows cheating is \(\frac{1}{2^\lambda} \)
Verifiable Secret Sharing Scheme

- Secret sharing scheme
- Correctness of the shares can be checked
- If everything or sufficiently big subset is correct then we can open
- Usually needs broadcast at some point
 - Detectable broadcast is sufficient
 - Either everyone receives the message or everyone aborts
 - Unless we need to guarantee termination
- Not efficient for full MPC protocol but crucial for some steps
 - We’ll look at a compiler from security with abort to complete fairness
Compiler From Abort to Fair

- Security with abort
 - The adversary sees the output and can decide if the honest parties receive it or not
- Complete fairness
 - The adversary may abort but without seeing the output
 - Essentially the best to hope for in many settings
 - It is hard to guarantee termination in most settings
 - So it is hard to guarantee output delivery
- Preconditions:
 - Security with Abort
 - Output is revealed in the last round of computations
 - Honest majority
 - Detectable broadcast
 - Success of the opening can be decided only based on the messages in the opening round *
- Full active security with guaranteed output delivery is possible:
 - Honest majority, and
 - Unconditionally secure broadcast with termination
Run the computation phase as is
 • Can abort but no outputs are revealed

Opening round:
 • Let $d_{i,j}$ be the message of the output round sent from P_i to P_j
 • Parties use VSS to secret share $d_{i,j}$
 • Parties use $d_{i,j}$ to check if the protocol should abort
 • All parties use detectable broadcast to publish if they aborted or not
 • If none of the parties aborted then all VSS shares of $d_{i,j}$ are sent to P_j
 • Parties apply the reconstruction algorithm to learn $d_{i,j}$
 • The number of honest parties has to be such that successful opening is guaranteed if the protocol succeeded before
 • Parties follow the computations of the output round with $d_{i,j}$
• Compiler idea: Yet Another Compiler for Active Security or: Efficient MPC Over Arbitrary Rings. Ivan Damgård, Claudio Orlandi, and Mark Simkin. CRYPTO 2018

• Three party case: Use your Brain! Arithmetic 3PC For Any Modulus with Active Security Hendrik Eerikson, Marcel Keller, Claudio Orlandi, Pille Pullonen, Joonas Puura, and Mark Simkin. ePrint 2019

• GMW: How to play any mental game or A completeness theorem for protocols with honest majority. Oded Goldreich, Silvio Micali, and Avi Wigderson. ACM STOC 1987.