Secure multiparty computation with malicious adversaries
Principle

- There is a (randomized) function $f : (\{0, 1\}^\ell)^n \rightarrow (\{0, 1\}^\ell)^n$.
- There are n parties, P_1, \ldots, P_n.
 - Some of them may be adversarial.
- Party P_i has the bit-string $x_i \in \{0, 1\}^\ell$.
- Party P_i wants to learn y_i, where

 \[(y_1, \ldots, y_n) = f(x_1, \ldots, x_n)\, .\]

- There is an access structure \varnothing, listing the intolerable coalitions
- Let $I \subseteq \{1, \ldots, n\}$. If $I \not\in \varnothing$, then the coalition $\{P_i\}_{i \in I}$ may not learn anything beyond $\{(x_i, y_i)\}_{i \in I}$
Real vs. Ideal security definitions

(P_1, \ldots, P_n) is at least as secure as I

$$\exists Sim \forall Z \forall A : \text{view}_{\text{REAL}}(Z) \approx \text{view}_{\text{IDEAL}}(Z)$$
Details of machines P_i

- Goal: compute $(y_1, \ldots, y_n) = f(x_1, \ldots, x_n)$
- At beginning, may receive “corrupt” from A
- May do initialization together with other P_1, \ldots, P_n
- Receives x_i from Z
 - if corrupt, sends x_i to A, receives back updated x_i
- Runs the protocol with other P_1, \ldots, P_n
 - Honest parties follow the instructions
 - Corrupted parties send all received messages to A, receive back messages to send to other parties
- Eventually obtains the result y_i
 - if corrupt, sends y_i to A, receives back updated y_i
- Sends y_i to Z
Ideal functionality for secure MPC

- At the beginning, receives “corrupt C” for $C \subseteq \{1, \ldots, n\}$ from the adversary
 - If $C \in \emptyset$, then put $C := \{1, \ldots, n\}$
- Receives x_1, \ldots, x_n over respective connections
 - If $i \in C$: sends x_i to adversary
 - Eventually, adversary may give back updated x_i
- If all values x_1, \ldots, x_n are present, then compute
 $$(y_1, \ldots, y_n) = f(x_1, \ldots, x_n)$$
- Give y_i to the adversary for all $i \in C$; the adversary gives back updated y_i
- Give y_i to \mathcal{Z} over respective connections
Variation: active-with-abort security

- At the beginning, receives "corrupt C" for $C \subseteq \{1, \ldots, n\}$ from the adversary
 - If $C \in \emptyset$, then put $C := \{1, \ldots, n\}$
- Receives x_1, \ldots, x_n over respective connections
 - If $i \in C$: sends x_i to adversary
 - Eventually, adversary may give back updated x_i
- If all values x_1, \ldots, x_n are present, then compute $(y_1, \ldots, y_n) = f(x_1, \ldots, x_n)$
- Give y_i to the adversary for all $i \in C$; the adversary gives back updated y_i
- For each $i \in \{1, \ldots, n\}$: if the adversary allows, then give y_i to Z over respective connection
Variation: covert security

- At the beginning, receives “corrupt \(C \)” for \(C \subseteq \{1, \ldots, n\} \) from the adversary
 - If \(C \in \emptyset \), then put \(C := \{1, \ldots, n\} \)
- Receives \(x_1, \ldots, x_n \) over respective connections
 - If \(i \in C \): sends \(x_i \) to adversary
 - Eventually, adversary may give back updated \(x_i \)
- If all values \(x_1, \ldots, x_n \) are present, then compute
 \[(y_1, \ldots, y_n) = f(x_1, \ldots, x_n)\]
- If it receives “cheat \(j \)” with \(j \in C \) from the adversary, then
 - With probability \(\epsilon \), cheating failed
 - With probability \((1 - \epsilon) \), cheating succeeded
 Adversary gets notified of the outcome.
- next steps depend on the existence, success or failure of the cheating attempt
Covert security follow-up

- Give y_i to the adversary for all $i \in C$; the adversary gives back updated y_i
- If cheating failed: Set $y_i := \text{“cheating } j\text{”}$ for all $i \notin C$
- If no successful cheating: Give y_i to \mathcal{Z} over respective connections
- If successful cheating: Give y_i to \mathcal{Z} only if the adversary allows it
 - The adversary may also change y_i
- If there was an attempt to cheat, then: Possibly: give to the adversary also (x_i, y_i), where $i \notin C$
Broadcast

The computed function

\[f(v, \bot, \ldots, \bot) = (v, v, \ldots, v) \]

The meaning

- One party (the sender) inputs a value \(v \)
- All honest parties output the same value \(v' \)
- If the sender was also honest, then \(v' = v \)

Studied settings

- Network — synchronous or asynchronous
- Cryptography — used or not used
We request an extension

\[\{\text{An extension would be bad}\}\]_K_B
(Im)possibility results

\(n \) — total number of parties; \(f \) — number of corrupt parties

- Asynchronous network — there is no deterministic protocol for broadcast
 - Randomized protocols exist for \(f < \frac{n}{3} \)
- Synchronous network:
 - No cryptography — \(f < \frac{n}{3} \) is necessary and sufficient
 - With cryptography — \(f \leq n - 2 \) is possible
A protocol for $f < n/3$ (1/2)

The protocol

- Use the protocol $\Pi_f(P, S, v)$, where
 - P is the set of all parties, $|P| = n$
 - $S \in P$ is the sending party
 - v is the value to be sent

Protocol $\Pi_0(P, S, v)$

- S sends v to all parties in $P \setminus \{S\}$
- S outputs v. $P \in P \setminus \{S\}$ outputs the received value, or \perp, if none
A protocol for $f < n/3$ (2/2)

\[
\text{majority}(v_1, \ldots, v_k) := \begin{cases}
 v, & \text{if } v_i = v \text{ for more than } k/2 \text{ values of } i \\
 \bot, & \text{otherwise}
\end{cases}
\]

Protocol $\Pi_m(P, S, v)$

- S sends v to all parties in $P \setminus \{S\}$
- For each $R \in P \setminus \{S\}$: invoke $\Pi_{m-1}(P \setminus \{S\}, R, v)$
- S outputs v
- Each $R \in P \setminus \{S\}$ obtained $v_1, v_2, \ldots, v_{|P|-1}$ from the invocations of protocols Π_{m-1}. Outputs $\text{majority}(v_1, \ldots, v_{|P|-1})$
Security proof

- **Lemma.** If $|P| \geq 2k + m$, num. of bad parties is at most k, and S is honest, then all honest parties output v in $\Pi_m(P, S, v)$
 - Induction over m

- **Theorem.** If num. of bad parties is at most m, and $|P| \geq 3m + 1$, then Π_m is a secure protocol for broadcast
 - Case “Honest sender” is covered by the lemma
 - Case “Bad sender” is proved by induction over m
A protocol with signatures

- Receiver R_i initializes $V_i := \emptyset$
- Sender S sends $\{v\}_S$ to all receivers
- Whenever some R_i receives $M = \{\cdots \{\{v'\}_S\}_S\}_R_1 \cdots\}_R_k$:
 - Ignore it, if it has seen the sequence of signers S, R_1, \ldots, R_k earlier
 - Ignore it, if S, R_1, \ldots, R_k are not all different
 - If $v' \not\in V_i$, then
 - Update $V_i := V_i \cup \{v'\}$
 - If $k < f$, then send $\{M\}_{R_i}$ to everybody except S, R_1, \ldots, R_k

- At the end, R_i outputs $\text{choice}(V_i)$
 - choice is any deterministic function from sets of messages to messages (or \bot), satisfying $\text{choice}(\{v\}) = v$ for any message v
Security proof

Lemma. If R_i and R_j are honest, then $V_i = V_j$

- Sufficient to show: if $v' \in V_i$ then $v' \in V_j$
- If $v' \in V_i$, then R_i received $[[\cdots [[v']_S]_{R_1} \cdots]_{R_k}$
 - If $k < f$, then R_i forwarded it to R_j
 - If $k = f$, then one of S, R_1, \ldots, R_k was honest. This party sent v' to R_j, too

Lemma. If S is honest, then $V_i = \{v\}$ for each honest R_i
Impossibility result (no crypto)

Theorem

There is no secure broadcast protocol for three parties that tolerates a malicious party

Corollary

There is no secure broadcast protocol for \(3f\) parties that tolerates \(f\) malicious parties

Proof of the corollary

- Suppose \(\Pi_f\) is such a protocol
- Construct a three-party protocol, by
 - The sender playing the sender and \((f - 1)\) receivers of \(\Pi_f\)
 - Each receiver playing \(f\) receivers of \(\Pi_f\)