Secret-sharing based secure multiparty computation with malicious adversaries

05.11.2019
Error-correcting codes

- An \((n, t, d)\)-code over a set \(X\) is a mapping \(C : X^t \rightarrow X^n\), such that for all \(x_1, x_2 \in X^t\), \(x_1 \neq x_2\) implies that \(C(x_1)\) and \(C(x_2)\) differ in at least \(d\) positions.
- An element \(x \in X^t\) is encoded as \(y = C(x) \in X^n\) and transmitted. During transmission, errors may occur in some positions of \(y\).
- A \((n, t, d)\)-code can detect at most \(d - 1\) errors.
- A \((n, t, d)\)-code can correct at most \((d - 1)/2\) errors.
- Efficiency is another question, though.
Error-correcting codes

- An \((n, t, d)\)-code over a set \(X\) is a mapping \(C : X^t \rightarrow X^n\), such that for all \(x_1, x_2 \in X^t\), \(x_1 \neq x_2\) implies that \(C(x_1)\) and \(C(x_2)\) differ in at least \(d\) positions.

- An element \(x \in X^t\) is encoded as \(y = C(x) \in X^n\) and transmitted. During transmission, errors may occur in some positions of \(y\).

- A \((n, t, d)\)-code can detect at most \(d - 1\) errors.

- A \((n, t, d)\)-code can correct at most \((d - 1)/2\) errors.

- Efficiency is another question, though.

- In a linear code, \(X\) is a field and \(C\) is a linear mapping between vector spaces \(X^t\) and \(X^n\).

- For linear codes, \(d \leq n - t + 1\).
Reed-Solomon codes

- Reed-Solomon codes are linear codes over some finite field \mathbb{F}.
- To encode t elements of \mathbb{F} as n elements of \mathbb{F}, fix n different elements $c_1, \ldots, c_n \in \mathbb{F}$.
- Interpret the source word (f_0, \ldots, f_{t-1}) as a polynomial $p(x) = \sum_{i=1}^{t-1} f_i x^i$.
- Encode it as $(p(c_1), \ldots, p(c_n))$.
- For Reed-Solomon codes, $d = n - t + 1$.
- Hence they can correct up to $(n - t)/2$ errors.
Decoding Reed-Solomon codes

- Suppose that the original codeword was \((s_1, \ldots, s_n)\), corresponding to the polynomial \(p\).
- But we received \((\tilde{s}_1, \ldots, \tilde{s}_n)\).
 - We assume it has at most \((n - t)/2\) errors.
- Find the coefficients for polynomials \(q_0\) and \(q_1\), such that
 - Degree of \(q_0\) is at most \((n + t - 2)/2\). Degree of \(q_1\) is at most \((n - t)/2\).
 - For all \(i \in \{1, \ldots, n\}\): \(q_0(c_i) - q_1(c_i) \cdot \tilde{s}_i = 0\).
 - \(q_0\) and \(q_1\) are not both equal to 0.
- Then \(p = q_0 / q_1\).
- In general, there are more equations than variables, but \(\tilde{s}_i\) are not arbitrary.
Correctness of decoding

Such polynomials \(q_0, q_1 \) exist:

- \((s_1, \ldots, s_n), (\tilde{s}_1, \ldots, \tilde{s}_n)\) — original and received codewords. Let \(E \) be the set of \(i \), where \(s_i \neq \tilde{s}_i \). Then \(|E| \leq (n - t)/2 \).
- Let \(k(x) = \prod_{i \in E} (x - c_i) \). Then \(\deg k \leq (n - t)/2 \).
- Take \(q_1 = k \) and \(q_0 = p \cdot k \). Then \(\deg q_0 \leq (n + t - 2)/2 \).
- For all \(i \in \{1, \ldots, n\} \) we have

\[
q_0(c_i) - q_1(c_i) \cdot \tilde{s}_i = k(c_i)(p(c_i) - \tilde{s}_i) = k(c_i)(s_i - \tilde{s}_i) = \\
\begin{cases}
 k(c_i)(s_i - s_i) = 0, & i \notin E \\
 0 \cdot (s_i - \tilde{s}_i) = 0, & i \in E
\end{cases}
\]
Correctness of decoding

If q_0 and q_1 satisfy the equalities and upper bounds on degrees, then $p = q_0 / q_1$:

- Let $q'(x) = q_0(x) - q_1(x)p(x)$. Degree of q' is at most $(n + t - 2)/2$.
- For each $i \notin E$,

 $q'(c_i) = q_0(c_i) - q_1(c_i)p(c_i) = q_0(c_i) - q_1(c_i)\tilde{s}_i = 0$.

 $1 \leq i \leq n$.

- The number of such i is at least $n - (n - t)/2 = (n + t)/2$.
- Thus the number of roots of q' is larger than its degree. Hence $q' = 0$.

- $q_0 - q_1 \cdot p = 0$.

05.11.2019
MPC with no errors

- The number of corrupted players is at most $t - 1 < n/3$.
- To distribute inputs, each party first commits to his input and then shares the commitment.
- Shamir’s scheme is used for both committing and sharing.
 - Hence the commitments are homomorphic.
 - For a value a, let $[a]_i$ denote the commitment of P_i to a. The commitment is distributed, hence $[a]_i = ([a]_i^1, \ldots, [a]_i^n)$, with P_j holding the piece $[a]_i^j$.
Commitments

We need the following functionalities:

- **Commit**: P_i commits to a value a.
 - $[a]_i$ is a sharing of a using (n, t)-secret sharing.
 - Followed by a proof that the degree of the polynomial is $\leq (t - 1)$.

- **Open** and **OpenPrivate**: opens a commitment.
 - Everybody broadcasts his share or sends it privately to the party that is supposed to open it.
 - Errors can be corrected.

- **Linear Combination**: several commitments of the same party (or different parties) are linearly combined.
 - Everybody performs the same combination on the shares he’s holding.
Commitments

- **Transfer**: turns P_i’s commitment $[a]_i$ into P_j’s commitment $[a]_j$. Party P_j learns a.
 - OpenPrivate a for P_j.
 - P_j Commits a, giving $[a]_j$.
 - Find the Linear Combination $[a]_i - [a]_j$ and Open it; check that it is 0.

- **Share**: applies Shamir’s secret sharing to a committed value $[a]_i$.
 - P_i generates the values a_1, \ldots, a_{t-1} and Commits to them.
 - $s_i = a + \sum_{j=1}^{t-1} a_j i^j$. These Linear Combinations of $[a]_i$ and $[a_1]_i, \ldots, [a_{t-1}]_i$ are computed, resulting in commitments $[s_1]_i, \ldots, [s_n]_i$.
 - Commitment $[s_j]_i$ is Transfered to $[s_j]_j$.
Commitments

- **Multiply.** Given \([a]_i\) and \([b]_i\), the party \(P_i\) causes the computation of \([c]_i\), where \(c = a \cdot b\).
- Compute \(c\) and Commit to it.
- Share \([a]_i\) and \([b]_i\), giving \([s^a]_1, \ldots, [s^a]_n\) and \([s^b]_1, \ldots, [s^b]_n\).
 - Let the polynomials be \(f^a\) and \(f^b\).
- Let \(f^c(x) = f^a(x) \cdot f^b(x) = c + \sum_{j=1}^{2t-2} c_j x^j\). Party \(P_i\) Commit to \(c_1, \ldots, c_{2t-2}\).
- Compute \([f^c(1)]_i, \ldots, [f^c(n)]_i\) as Linear Combinations of \([c]_i\) and \([c_1]_i, \ldots, [c_{2t-2}]_i\).
- OpenPrivate \([f^c(j)]_i\) to \(P_j\). He checks that \(s^a_j \cdot s^b_j = f^c(j)\). If not, broadcast complaint and Open \([s^a]_j, [s^b]_j\).
- If \(P_j\) complains then \(P_i\) Opens \([f^c(j)]_i\). Either \(P_i\) or \(P_j\) is disqualified.

Exercise. Show that if \(P_i\) cheats then there will be a complaint.
MPC

- For each wire, the value on it is shared and the parties have commitments to those shares.
- Start: each party **Commits** to his input and then **Shares** it.
- Addition gates: **Linear Combination** is used to add the shares of values on incoming wires.
- Multiplication gates: the shares of the values on incoming wires are **Multiplied** together. These products are **Shared** and those shares are recombined into the shares of the product, using **Linear Combination**.
 - i.e. Gennaro-Rabin-Rabin multiplication is performed on committed shares.
- End: the shares of a value that a party is supposed to learn are **Opened Privately** to this party.
Commit: proving the degree of a polynomial

- P_i wants to commit to a value a using a random polynomial f, where $\deg f \leq t - 1$ and $f(0) = a$. A party P_j learns $[a]_i^j = f(j)$.
- P_i has to convince others that f has a degree at most $t - 1$.
Commit: proving the degree of a polynomial

- P_i wants to commit to a value a using a random polynomial f, where $\deg f \leq t - 1$ and $f(0) = a$. A party P_j learns $[a]_i^j = f(j)$.
- P_i has to convince others that f has a degree at most $t - 1$.
- P_i randomly generates a two-variable symmetric polynomial F, such that $F(x, 0) = f(x)$ and the degrees of F with respect to x and y are $\leq (t - 1)$. I.e.
 - randomly generate coefficients $c_{kl} \in \mathbb{F}$, where $1 \leq l \leq k \leq t - 1$;
 - Let $c_{00} = a$. Let c_{i0} be the coefficient of x^i in f.
 - Let $c_{lk} = c_{kl}$ for $l \geq k$.
 - Let $F(x, y) = \sum_{k=0}^{t-1} \sum_{l=0}^{t-1} c_{kl} x^k y^l$.
- P_i sends to P_j the polynomial $F(x, j)$ (i.e. its coefficients). The share $[a]_i^j$ of P_j is $F(0, j) = F(j, 0) = f(j)$.
Commit: proving the degree of a polynomial

- P_j and P_k compare the values $F(k, j)$ and $F(j, k)$. If they differ, they broadcast a complaint $\{j, k\}$.
- P_i answers to “complaint $\{j, k\}$” by publishing the value $F(j, k)$ (which is the same as $F(k, j)$).
- If P_j (or P_k) has a different value then he broadcasts “disqualify P_i”.
- P_i responds to that by broadcasting $F(x, j)$.
- All parties P_l check that $F(l, j) = F(j, l)$. If not, broadcast “disqualify P_i”. Again P_i responds by broadcasting $F(x, l)$, etc.
- If there are at least t disqualification calls then P_i is disqualified.
- Otherwise the commitment is accepted and parties update their shares with the values that P_i had broadcast.
Soundness and privacy

- **Exercise.** Show that if P_i is honest then the adversary does not learn anything beyond the polynomials $F(x,j)$, where P_j is corrupt.

- **Exercise.** Show that if the commitment is accepted then the shares $[a]^j_i$ of honest parties are lay on a polynomial of degree $\leq (t - 1)$.
Consistency of shares

Let $B \subseteq \{1, \ldots, n\}$ be the set of indices of honest parties. We must show that there exists a polynomial g of degree at most $t - 1$, such that $g(j) = [a]_i^j = F(0, j)$ for all $j \in B$.

Let $C \subseteq B$ be the indices of honest parties that did not accuse the dealer. **Exercise.** How large must C be?

Exercise. Show that for all $j \in B$ and $k \in C$ we have $F(j, k) = F(k, j)$ at the end of the protocol.

Let r_k, where $k \in C$ be the Lagrange interpolation coefficients for polynomials of degree $\leq t - 1$. I.e. $h(0) = \sum_{k \in C} r_k h(k)$ for all such polynomials h. **Exercise.** Why do such r_k exist?

Exercise. Show that $g(x) = \sum_{k \in C} r_k \cdot F(x, k)$ is the polynomial we’re looking for.
Linear Secret Sharing Schemes (LSSS)

Monotone Span Programs (MSP)

MSP for parties in set \mathcal{P} consists of
- $M \in \mathbb{F}^{m \times d}$ with $m \geq d$; $\varepsilon \in \mathbb{F}^d$; $\psi : \{1, \ldots, m\} \to \mathcal{P}$

Secret-sharing $s \in \mathbb{F}$ among \mathcal{P} using a MSP

- Pick $x \xleftarrow{\$} \mathbb{F}^m$ subject to $\langle x, \varepsilon \rangle = s$
- Let $s = M \cdot x$. Give i-th component of s to party $\psi(i)$
- $\mathcal{Q} \subseteq \mathcal{P}$ is qualified if ε is in the span of the rows of M with indices in $\psi^{-1}(\mathcal{Q})$
 - Let $\lambda^\mathcal{Q}$ be such that $(M_{\psi^{-1}(\mathcal{Q})})^\top \lambda^\mathcal{Q} = \varepsilon$
 - Recovery: compute $\langle \lambda^\mathcal{Q}, s_{\psi^{-1}(\mathcal{Q})} \rangle$

Examples: Shamir’s sharing. The any-access-structure scheme.
Multiplicative LSSSs

Local tensor

Let \(s, s' \in \mathbb{F}^m \) and \(\psi : \{1, \ldots, m\} \rightarrow \mathcal{P} \). Define \(s \otimes_1 s' \) as the vector of all values \(s_i \cdot s_j \), where \(i, j \in \{1, \ldots, m\} \), \(\psi(i) = \psi(j) \).

Multiplicative LSSS

LSSS is multiplicative if

- There is a vector \(v \),
- Such that for all values \(s, s' \in \mathbb{F} \),
- For all sharings \(s \) of \(s \) and \(s' \) of \(s' \),
- We have \(\langle v, s \otimes_1 s' \rangle = s \cdot s' \)

Examples: Shamir’s sharing. Replicated sharing (“any-access-structure”, where formula is in CNF)
Honest majority \Rightarrow LSSS detects errors

- Let MSP allow only a majority of parties to recover the secret.
- Then a minority \mathcal{Q} cannot encode an error:
 - Let $s^\mathcal{Q}$ be such that $s_i \neq 0$ only if $\psi(i) \in \mathcal{Q}$. Then s encodes 0 or s is erroneous.
- With multiplication triples, can do MPC with security against active abort.
Proactive secret sharing

- Let D be a secret that is distributed with Shamir’s secret sharing scheme, using the polynomial f_\circ of degree $\leq t - 1$.
- Recomputing shares: change the polynomial to f_\bullet with $f_\circ(0) = f_\bullet(0)$ in a random manner.
- Passive adversary:
 - each party P_i generates a random polynomial h_i with zero free term; sends $h_i(j)$ to P_j.
 - parties add the values they got to their current shares.
 - Thus $f_\bullet = f_\circ + h_1 + \cdots + h_n$.
- Active adversaries: use VSS. Only use h-s from honest parties.
- A party relieved from adversarial control needs to be repaired.
 - To repair P_r, construct a polynomial $f_\bullet + h$ where h is a random polynomial with $h(r) = 0$.
 - Send to P_r the shares corresponding to that polynomial.