Cryptographic protocols
(MTAT.07.014, 6 ECTS)

Lectures and Exercises:
Tue 12-14 Ülikooli 17–220
Wed 10-12 Ülikooli 17–218

All information at https://courses.cs.ut.ee/

Grading: Home exercises and oral exam in January.

Teachers: Peeter Laud, Alisa Pankova, Pille Pullonen
firstname.lastname@cyber.ee
Overall topic of this course

- Cryptology I was mostly about primitives.
 - (A)symmetric encryption, signatures, MACs, hash functions, etc.
- To achieve the security goals of systems, several of them have to be used together.
- This gives us protocols.
- It’s quite easy to use the primitives in the wrong way.
- This makes the protocols insecure, although the primitives themselves might have been secure.
 - Primitive ≡ a lock
 - Protocol ≡ how you use that lock
Example 0

- Alice and Bob want to set up a private channel between themselves.
- They know each other’s public keys K_A and K_B.
- Alice generates a new key K_{AB} of some symmetric encryption system.
- Alice sends K_{AB} to B, encrypted with K_B.

$$A \rightarrow B : \{[K_{AB}]\}_{K_B}$$

- Bob decrypts and learns K_{AB}.
- Alice and Bob use K_{AB} to encrypt messages between each other.
 - Assume it also provides integrity.
Immediate questions

- Who sent the key to Bob?
 - Alice did...

- Include Alice’s name in the message:
 \[A \rightarrow B : \{ [A, K_{AB}] \}_B \]

- Although that does not prove anything... Why?
Immediate questions

- When was it sent?
 - consider replay attacks.
 - The adversary may somehow know the old session keys.
- Include a timestamp to the message:

 \[A \rightarrow B : \{[A, T, K_{AB}]\}_{K_B} \]

- B must check that \(T \) is not far off.
- How do \(A \) and \(B \) synchronize their clocks?
- What if the attacker takes over \(B \)'s NTP server?
Instead of a timestamp

Better: include a nonce in the message:

\[A \rightarrow B : \{[A, N, K_{AB}]\}_{K_B} \]

- Nonce ≡ random bit-string.
- \(B \) must check that it has not received that \(N \) before.
Instead of a timestamp

- Better: include a nonce in the message:

 \[A \rightarrow B : \{ [A, N, K_{AB}] \}_{K_B} \]

 - Nonce \(\equiv \) random bit-string.
 - \(B \) must check that it has not received that \(N \) before.
 - \(B \) has to store all \(N\)-s it receives. . . What if his hard drive fails?
 - The attacker may
 1. not deliver the message \(\{ [A, N, K_{AB}] \}_{K_B} \);
 2. wait until it learns \(K_{AB} \);
 3. deliver \(\{ [A, N, K_{AB}] \}_{K_B} \).

Liveness of A

- B needs to know that A sent that message recently.
- B must answer to A and then A must answer to B.

\[
A \rightarrow B : \{[A, N, K_{AB}]\}_{K_B} \\
B \rightarrow A : \{[???]\}_{K_A} \\
A \rightarrow B : \{[???]\}_{K_B}
\]
Liveness of A

- 2nd and 3rd message have to mention \(N \).

\[
\begin{align*}
A &\rightarrow B: \{[A, N, K_{AB}]\}_{K_B} \\
B &\rightarrow A: \{[N]\}_{K_A} \\
A &\rightarrow B: \{[N]\}_{K_B}
\end{align*}
\]

- \(A \) must verify that it sent \(N \) recently.
- \(B \) must do the same verification after 3rd message.
- What replay possibilities are there?
Liveness of A

- B needs a nonce, too.

\[
\begin{align*}
A &\rightarrow B: \{[A, N_A, K_{AB}]\}_{K_B} \\
B &\rightarrow A: \{[N_A, N_B]\}_{K_A} \\
A &\rightarrow B: \{[N_A, N_B]\}_{K_B}
\end{align*}
\]
Man-in-the-middle attack

Assume now that Alice wants to talk to Charlie:

\[A \xrightarrow{1} C : \{A, N_A, K_{AC}\}_{K_C} \]

to Charlie.
Man-in-the-middle attack

Assume now that Alice wants to talk to Charlie:

\[A \xrightarrow{1} C : \{[A, N_A, K_{AC}]\}_{K_C} \]

But Charlie is bad...

Bob responds, thinking that Alice is talking to him:

\[C(A) \xrightarrow{1'} B : \{[A, N_A, K_{AC}]\}_{K_B} \]

Alice decrypts that pair of nonces for Charlie:

\[A \xrightarrow{3} C : \{[N_A, N_B]\} \]

and Charlie can respond to Bob:

\[C(A) \xrightarrow{3'} B : \{[N_A, N_B]\} \]
Man-in-the-middle attack

Assume now that Alice wants to talk to Charlie:

\[A \stackrel{1}{\longrightarrow} C : \{[A, N_A, K_{AC}]\}_{K_C} \]

But Charlie is bad...

Bob responds, thinking that Alice is talking to him:

\[C(A) \stackrel{1'}{\longrightarrow} B : \{[A, N_A, K_{AC}]\}_{K_B} \]

\[B \stackrel{2'}{\longrightarrow} C(A) : \{[N_A, N_B]\}_{K_A} \]
Man-in-the-middle attack

Assume now that Alice wants to talk to Charlie

But Charlie is bad...

Bob responds, thinking that Alice is talking to him:

Charlie simply forwards that message:

\[A \xrightarrow{1} C : \{ [A, N_A, K_{AC}] \}_{K_C} \]

\[C(A) \xrightarrow{1'} B : \{ [A, N_A, K_{AC}] \}_{K_B} \]

\[B \xrightarrow{2'} C(A) : \{ [N_A, N_B] \}_{K_A} \]

\[C \xrightarrow{2} A : \{ [N_A, N_B] \}_{K_A} \]
Man-in-the-middle attack

Assume now that Alice wants to talk to Charlie

But Charlie is bad...

Bob responds, thinking that Alice is talking to him:

Charlie simply forwards that message:

Alice decrypts that pair of nonces for Charlie:

\[A \xrightarrow{1} C : \{ [A, N_A, K_{AC}] \}_{K_C} \]

\[C(A) \xrightarrow{1'} B : \{ [A, N_A, K_{AC}] \}_{K_B} \]

\[B \xrightarrow{2'} C(A) : \{ [N_A, N_B] \}_{K_A} \]

\[C \xrightarrow{2} A : \{ [N_A, N_B] \}_{K_A} \]

\[A \xrightarrow{3} C : \{ [N_A, N_B] \}_{K_C} \]
Man-in-the-middle attack

Assume now that Alice wants to talk to Charlie:

But Charlie is bad...

Bob responds, thinking that Alice is talking to him:

Charlie simply forwards that message:

Alice decrypts that pair of nonces for Charlie:

and Charlie can respond to Bob:

\[A \xrightarrow{1} C : \{ [A, N_A, K_{AC}] \}_{K_C} \]

\[C(A) \xrightarrow{1'} B : \{ [A, N_A, K_{AC}] \}_{K_B} \]

\[B \xrightarrow{2'} C(A) : \{ [N_A, N_B] \}_{K_A} \]

\[C \xrightarrow{2} A : \{ [N_A, N_B] \}_{K_A} \]

\[A \xrightarrow{3} C : \{ [N_A, N_B] \}_{K_C} \]

\[C(A) \xrightarrow{3'} B : \{ [N_A, N_B] \}_{K_B} \]
Man-in-the-middle attack

Assume now that Alice wants to talk to Charlie:

But Charlie is bad...

Bob responds, thinking that Alice is talking to him:

Charlie simply forwards that message:

Alice decrypts that pair of nonces for Charlie:

and Charlie can respond to Bob:

Now Bob thinks that he shares the key K_{AC} with Alice, but Charlie also knows that key.
A possible fix

- B’s answer must contain his name:

 \[A \rightarrow B : \{[A, N_A, K_{AB}]\}_{K_B} \]
 \[B \rightarrow A : \{[N_A, N_B, B]\}_{K_A} \]
 \[A \rightarrow B : \{[N_A, N_B]\}_{K_B} \]

- Is this protocol secure? Maybe...

- Are all its parts necessary?
 - Do we need all components of all messages?
 - Does everything have to be under encryption?

 Probably not.
More fundamental questions

- What is the security property?
- What did this $A \rightarrow B : M$ actually mean? Or:
- What is the execution model?
 - What data and control structures do the parties use?
 - How are the messages relayed?
 - How are the parties scheduled?
 - Where is the adversary?
 - How are the parties corrupted and the keys leaked?

We do not need answers to all of these questions as long as we are just showing attacks against protocols.
Formally

- Each party is an implementation of some interface. It has methods for
 - starting a session;
 - receiving a message and producing an answer;
 - maybe something more.
- The adversary has a method “run” that takes all participants as its arguments.
 - More generally: there is an environment with a method “run” that takes both the participants and the adversary as arguments.
 - The implementation of this environment is fixed. This defines the scheduling and the relaying of messages.
Setup of parties

A

P1

P2

P3

P4

P5

Init

Secrets
Possible commands to parties

Start session 172
Initiator = P_2
Responder = P_4
... = A
Possible commands to parties

Init

Secrets

P_1

P_2

P_3

P_4

P_5

session 53

msg. 3 is T

A
Possible commands to parties

\[\text{Secrets} \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P_5 \]

Init

give me msg. 4 of session 13
Environment defining the secrecy of something

Secrets

P_1 P_2 P_3 P_4 P_5

Init

A

b

b^*
Such analysis may be hard... but we’ll be rewarded with rigorous security proofs.

But, intuitively, what are the things that an adversary may do?
The adversary can...

- Capture messages sent by one party to another.
 - Learn the intended sender and recipient.
- Send a message it has constructed to any party.
 - ...faking the sender.
- Generate new keys, nonces, ...
- Construct new messages from the ones its has.
 - Only applying “legitimate” constructors.
 - Because everything else will be weeded out by other parties...
- Decompose tuples. Decrypt if it knows the key.
The adversary cannot...

The adversary cannot do things like:

- Learn anything about M from $\{[M]\}_K$.
- Transform $\{M_1\}_K, \ldots, \{M_n\}_K$ to $\{M'\}_K$ for M' related to M_1, \ldots, M_n, not knowing the key K.
- ...or construct any $\{M\}_K$ without knowing K at all.

Hence the encryption must provide message integrity, too.
- Such encryption is often called perfect.
- In the next few lectures we make the perfect cryptography assumption (also called the Dolev-Yao model).
Modeling computation / communication

- There are many calculi for modeling parallel / distributed processes
 - CCS, CSP, join-calculus, ...
- π-calculus was preferred by security researchers
 - Because of the new-operation in it
 - Used for channel creation
- π-calculus begat spi-calculus and applied pi-calculus
 - new used also for generating keys, nonces, ...

calculus \equiv programming language and its semantics
\begin{itemize}
 \item \underline{π-calculus}
 \item Let us have
 \begin{itemize}
 \item a countable set of \textbf{names}: $m, n, k, l, a, b, c, \ldots$
 \item a countable set of \textbf{variables}: x, y, z, w, \ldots
 \end{itemize}
 \item \underline{Messages} M, N, K, L, \ldots are either names or variables.
 \item \underline{Processes} P, Q, R, \ldots are one of
 \begin{align*}
 0 & \quad \text{(stopped process)} \\
 \bar{N}\langle M \rangle. P & \quad \text{(send M over channel N, then do P)} \\
 N(x). P & \quad \text{(receive message from channel N, store in x, do P)} \\
 P | Q & \quad \text{(do P and Q in parallel)} \\
 ! P & \quad \text{(intuitively same as $P | P | P | \cdots$)} \\
 (\nu m) P & \quad \text{(generate new name m, continue with P)} \\
 [M = N]. P & \quad \text{(if M equals N then do P)}
 \end{align*}
\end{itemize}
Examples

- $\bar{c}\langle m \rangle.0$ sends message m on channel c
- $c(x).\bar{d}\langle x \rangle.0$ receives a message on channel c and forwards it on channel d
- $(\nu m)\bar{c}\langle m \rangle.0$ generates a new name and sends it on channel c
- $(\nu c)((\nu m)\bar{c}\langle m \rangle | c(x).\bar{d}\langle x \rangle)$ causes a newly generated name to be sent on channel d
- $(\nu c)((\nu m)\bar{c}\langle m \rangle | c(x).\bar{d}_1\langle x \rangle | c(x).\bar{d}_2\langle x \rangle)$ causes a newly generated name to be sent either on channel d_1 or channel d_2
Free and bound (occurrences of) names and variables

- An occurrence can be free, a binder or bound to a previous binder.

- In processes:

\[
\begin{array}{llll}
\text{0} & \overline{N}\langle M \rangle.P & N(x).P_{x \rightarrow x} & P \mid Q \\
!P & (\nu m)P_{m \rightarrow m} & [M = N].P \\
\end{array}
\]

- \(P\) and \(Q\) are structurally congruent, \(P \equiv Q\), if they differ only by renaming of bound variables and names:
 - No captures! \(c(x).c(y).\overline{x}\langle m \rangle.\overline{y}\langle n \rangle \not\equiv c(y).c(y).\overline{y}\langle m \rangle.\overline{y}\langle n \rangle\).
 - But \(c(x).\overline{x}\langle m \rangle.c(y).\overline{y}\langle n \rangle \equiv c(y).\overline{y}\langle m \rangle.c(y).\overline{y}\langle n \rangle\).

- Let \(P\{M_1, \ldots, M_n/u_1, \ldots, u_n\}\) denote the simultaneous substitution of variables/names \(u_1, \ldots, u_n\) with messages \(M_1, \ldots, M_n\).
 - No captures! Rename bound variables in \(P\) as needed.
Structural congruence

- $P \equiv Q$, if they differ only by renaming of bound variables and names
- $P \mid Q \equiv Q \mid P$, $(P \mid Q) \mid R \equiv P \mid (Q \mid R)$, $P \mid 0 \equiv P$
- $!P \equiv P \mid !P$
- $(\nu m)(\nu n)P \equiv (\nu n)(\nu m)P$, $(\nu m)0 \equiv 0$
- $P \mid (\nu m)Q \equiv (\nu m)(P \mid Q)$ if n not free in P
- **Congruence!** If $P \equiv Q$ then $R[P] \equiv R[Q]$
Operational semantics

- ... is defined by the step relation $\rightarrow \subseteq \text{Proc} \times \text{Proc}$.
 - Proc — the set of all processes.
- $\overline{N}\langle M \rangle.P \mid N(x).Q \rightarrow P \mid Q\{M/x\}$
- $[M = M].P \rightarrow P$
- If $P \equiv P' \rightarrow Q' \equiv Q$ then $P \rightarrow Q$
- If $P \rightarrow Q$ then $P \mid R \rightarrow Q \mid R$ and $(\nu m)P \rightarrow (\nu m)Q$
- Not a congruence!
Example

\[(\nu c)((\nu m)\overline{c}\langle m \rangle \mid c(x).\overline{d}\langle x \rangle))\]
\[\equiv(\nu c)(\nu m)(\overline{c}\langle m \rangle \mid c(x).\overline{d}\langle x \rangle))\]
\[\rightarrow(\nu c)(\nu m)(0 \mid \overline{d}\langle m \rangle)\]
\[\equiv(\nu m)(\nu c)(0 \mid \overline{d}\langle m \rangle)\]
\[\equiv(\nu m)((\nu c)0 \mid \overline{d}\langle m \rangle)\]
\[\equiv(\nu m)(0 \mid \overline{d}\langle m \rangle)\]
\[\equiv(\nu m)\overline{d}\langle m \rangle\]
spi-calculus

- ...enriches the structure of messages
- ...introduces operations to analyze (take apart) messages
- Let Σ be a finite set of term constructors
 - pairing, encryption, signing, hashing, etc.
- Let $\text{ar}: \Sigma \rightarrow \mathbb{N}$ give the arity of each constructor.
- A message is one of
 - variable
 - name
 - $f(M_1, \ldots, M_{\text{ar}(f)})$, where $f \in \Sigma$.
For now, let the constructors be

- \(\text{pk}(K) \) gives the public key corresponding to secret decryption / signing key \(K \).
- \((M_1, \ldots, M_n)\) is the tuple of the messages \(M_1, \ldots, M_n \).
- \(\{M\}_K, \{M\}_{K_p}, \{M\}_{K_s} \) are the symmetric, asymmetric encryption and signatures.
 - If we model randomized primitives then there is the third argument, too — the random coins.
- \(h(M) \) is the digest of \(M \).

A party can apply a constructor if it knows all of its arguments.
Destructors

- Besides Σ and ar we are given a set of message destructors. They have
 - A name g and arity $ar(g)$, e.g. $dec/2$
 - Arguments, e.g. $x_{\text{key}}, \{x_{M}\}_{x_{\text{key}}}$
 - One or more possible results, e.g. x_{M}

- Denote $g(M_1, \ldots, M_{ar(g)}) \rightarrow M$
 - No names in $M_1, \ldots, M_{ar(g)}, M$.

- More examples:
 - $\pi^i_n((x_1, \ldots, x_n)) \rightarrow x_i$
 - $vfy(pk(x_{\text{key}}), x_{M}, [[x_{M}]]_{x_{\text{key}}}) \rightarrow \text{true}$
 - $\text{true} \in \Sigma. \ ar(\text{true}) = 0$
Applying destructors

○ A process can also be

\[[x := g(M_1, \ldots, M_k)].P \quad \text{(binds } x \text{ in } P) \]

○ The step relation is extended by

\[[x := g(M_1\sigma, \ldots, M_k\sigma)].P \rightarrow P\{M\sigma/x\} \quad \text{where} \]

○ \(g(M_1, \ldots, M_k) \rightarrow M \)

○ \(\sigma \) is a substitution from variables in \(M_1, \ldots, M_k, M \) to messages.
A protocol consists of

- The initialization of common variables;
 - Mainly long-term keys
- The parallel composition of all parties.

The protocol is executed in parallel with the adversary.

- The adversary can be any process
Our example

\[A \rightarrow B : \{ [A, N_A, K_{AB}] \}_{K_B} \]
\[B \rightarrow A : \{ [N_A, N_B, B] \}_{K_A} \]
\[A \rightarrow B : \{ [N_A, N_B] \}_{K_B} \]
Names \cong public keys

\begin{align*}
A \rightarrow B & : \{ [K_A, N_A, K_{AB}] \}_B \\
B \rightarrow A & : \{ [N_A, N_B, K_B] \}_A \\
A \rightarrow B & : \{ [N_A, N_B] \}_B
\end{align*}
Alice’s process (single session)

\[A \rightarrow B : \{ [K_A, N_A, K_{AB}] \}_{K_B} \]

\[B \rightarrow A : \{ [N_A, N_B, K_B] \}_{K_A} \]

\[A \rightarrow B : \{ [N_A, N_B] \}_{K_B} \]

\[P_A(SK_A, K_B) \text{ is} \]

\[
(\nu n_A)(\nu k_{AB}).\overline{c}\langle \{ [pk(SK_A), n_A, k_{AB}] \}_{K_B} \rangle .
\]

\[c(y_2).[z_2 := dec(SK_A, y_2)]. \]

\[[x_{NA} := \pi_1(z_2)].[x_{NB} := \pi_2(z_2)].[x_{KB} := \pi_3(z_2)]. \]

\[[n_A = x_{NA}].[x_{KB} = K_B].\overline{c}\langle \{ [n_A, x_{NB}] \}_{K_B} \rangle \]

- \(SK_A \) is the decryption key of party A. \(K_B \) is the public key of B.
- \(c \) is the public channel (Internet)
Bob’s process (single session)

\[A \rightarrow B : \{[K_A, N_A, K_{AB}]\}_{K_B} \]
\[B \rightarrow A : \{[N_A, N_B, K_B]\}_{K_A} \]
\[A \rightarrow B : \{[N_A, N_B]\}_{K_B} \]

\(P_B(SK_B, K_A) \) is

\[c(y_1).[z_1 := dec(SK_B, y_1)]. \]
\[[x_{KA} := \pi_1^3(z_1)].[x_{NA} := \pi_2^3(z_1)].[x_{KAB} := \pi_3^3(z_1)]. \]
\[[x_{KA} = K_A].(\nu n_B).\overline{c}\{[x_{NA}, n_B, pk(SK_B)]\}_{K_A}. \]
\[c(y_3)[z_3 := dec(SK_B, y_3)]. \]
\[[x_{NA2} := \pi_1^2(z_3)].[x_{NB} := \pi_2^2(z_3)].[x_{NA2} = x_{NA}].[x_{NB} = n_B] \]

\(SK_B \) is the decryption key of party B.
Whole protocol

(Alice as initiator, Bob as responder)

\[(\nu sk_A)(\nu sk_B). \]

\[
(!(c(x_K).P_A(sk_A, x_K)) | \\
! (c(x_K).P_B(sk_B, x_K)) | \\
c\langle pk(sk_A) \rangle | c\langle pk(sk_B) \rangle
)
\]

...and this is executed in parallel with the adversary.

Exercise. How to express that both Alice and Bob can serve as both initiator and responder?
Security properties:

- Secrecy of something — this thing cannot become the value of some variable in the adversarial process.
 - Generally a weaker property than “the adversary cannot distinguish which one of two fixed values this thing has”.
 - Justified by the perfection of the cryptographic primitives.

- Authenticity — a certain situation cannot happen...
 - B thinks it shares K_{AB} with A, but A thinks that K_{AB} is for a different purpose...
Alice thinks...

\(P_A(SK_A, K_B) \) is

\((n_A)(k_{AB})\).

. o O (start session with \(K_B \) using \((n_A, k_{AB}) \))
\(c(y_2).[z_2 := \text{dec}(SK_A, y_2)].\)
\([x_{NA} := \pi_1^3(z_2)].[x_{NB} := \pi_2^3(z_2)].[x_{KB} := \pi_3^3(z_2)].\)
\([n_A = x_{NA}].[x_{KB} = K_B].\)
. o O (end session with \(K_B \) using \((n_A, x_{NB}, k_{AB}) \))
\(c\langle\{[n_A, x_{NB}]\}_K B\rangle\)
Bob thinks...

\(P_B(SK_B, K_A) \) is

\[
c(y_1). [z_1 := dec(SK_B, y_1)]. \\
[x_{KA} := \pi^3_1(z_1)]. [x_{NA} := \pi^3_2(z_1)]. [x_{KAB} := \pi^3_3(z_1)]. \\
[x_{KA} = K_A]. (\nu n_B).
\]

. o O (start session with \(K_A \) using \((x_{NA}, n_B, x_{KAB})\))

\(\overline{c}\langle \{[x_{NA}, n_B, pk(SK_B)]\} K_A \rangle. \)

\[
c(y_3)[z_3 := dec(SK_B, y_3)]. \\
x_{NA2} := \pi^2_1(z_3)]. [x_{NB} := \pi^2_2(z_3)]. [x_{NA2} = x_{NA}]. [x_{NB} = n_B]. \\
. o O (end session with \(K_A \) using \((x_{NA}, n_B, x_{KAB})\))
\]
Authentication property

If B ended session with pk(sk_A) using (n_1, n_2, k) then A ended
session with pk(sk_B) using (n_1, n_2, k).

If A ended session with pk(sk_B) using (n_1, n_2, k) then B started
session with pk(sk_A) using (n_1, n_2, k).

...and for different red thoughts correspond different green
thoughts.
Scheduling

- Scheduling of protocols — non-deterministic.
- We get a set of protocol traces, not a probability distribution over them.
- Justification — both secrecy and authentication properties are specified by valid protocol traces.
- In our actual arguments we just assume that everything that may go wrong goes wrong.
 - Most secure computer — the one that is switched off
 - Most functional computer — the attacker
Arguing about the protocol

(A1) B ended session i with $K_A[i]$.

(A2) $K_A[i] = \text{pk}(sk_A)$.

1. $m_3[i]$, which came from outside, contained the value of $N_B[i]$.
2. $n_B[i]$ left the scope of the current session only inside the second message $M_2[i]$.
3. $M_2[i]$ was encrypted with $K_A[i] = \text{pk}(sk_A)$. Only someone who knows sk_A is able to decrypt it.
4. sk_A is used only to get the corresponding public key, and to decrypt. Hence the adversary cannot know sk_A.
Arguing about the protocol

(5) A had a session j where she decrypted $M_2[i] = y_2[j]$. Hence
- $x_{NA}[j] = x_{NA}[i], x_{NB}[j] = n_B[i], x_{KB}[j] = \text{pk}(sk_B)$.
- Maybe there were several such sessions j.

(6) $x_{NB}[j]$ left the scope of the session j only inside the third message $M_3[j]$.
- $K_B[j] = x_{KB}[j] = \text{pk}(sk_B), n_A[j] = x_{NA}[j] = x_{NA}[i]$.
- A ended session j with $K_B[j]$.
- We still have to show that
 - $k_{AB}[j] = x_{KAB}[i]$
 - There is no $i' \neq i$, such that B ended session i' with $\text{pk}(sk_A)$ using $(x_{NA}[i], n_B[i], x_{KAB}[i])$.
 - Easy — $n_B[i'] \neq n_B[i]$.
Arguing about the protocol

(7) $x_{KAB}[i]$ is defined together with $x_{NA}[i]$ which equals $n_A[j]$.

Can the adversary construct a message of the form

$$\{[pk(sk_A), x_{NA}[i], K']\}_{pk(sk_B)} \text{ with } K' \neq x_{KAB}[j]?$$

(8) $n_A[j]$ is sent out in messages $M_1[j]$ and $M_3[j]$. They are encrypted with $pk(sk_B)$.

(9) The adversary does not know sk_B.

(10) B does not accept the message $M_3[j]$ as the first message from A.

(11) If B accepts $M_1[j]$ in some session k, then $K_A[k] = pk(sk_A)$. Hence the adversary cannot decrypt $M_2[k]$. The adversary cannot learn $x_{NA}[i]$.

Arguing about the protocol

- The adversary cannot learn $x_{NA}[i] = n_A[j]$ and there is only a single first message containing it constructed by A.
- This message contains the key $k_{AB}[j]$.
- Injective agreement would still have hold if A’s belief about ending a session had not contained x_{NB}.
- The other property is proved similarly.
- Secrecy of k_{AB} is shown similarly to the secrecy of n_A.
Correspondence properties

- Authentication properties can be specified using correspondence properties.
- Introduce steps $\text{begin}(M)$ and $\text{end}(M)$ to the calculus.
- These statements do nothing but appear in the trace of the protocol.
 - $\text{begin}(M).P \rightarrow P$
 - $\text{end}(M).P \rightarrow P$
- A protocol has agreement if every $\text{end}(M)$ in a trace is preceded by $\text{begin}(M)$.
- A protocol has injective agreement if it satisfies agreement and one can find a different begin corresponding to each end.
$P_A(SK_A, K_B)$ is

$$(\nu n_A)(\nu k_{AB}).$$

. o O (start session with K_B using (n_A, k_{AB}))
$$\overline{c}\langle\{\{pk(SK_A), n_A, k_{AB}\}\}_{K_B}\rangle.$$
$$c(y_2).[z_2 := dec(SK_A, y_2)].$$
$$[x_{NA} := \pi^3_1(z_2)].[x_{NB} := \pi^3_2(z_2)].[x_{KB} := \pi^3_3(z_2)].$$
$$[n_A = x_{NA}].[x_{KB} = K_B].$$

. o O (end session with K_B using (n_A, x_{NB}, k_{AB}))
$$\overline{c}\langle\{[n_A, x_{NB}]\}_{K_B}\rangle.$$
\[P_A(SK_A, K_B) \text{ is} \]

\[(\nu n_A)(\nu k_{AB}).\]
\[c(y_2).[z_2 := dec(SK_A, y_2)].\]
\[x_{NA} := \pi_1^3(z_2).[x_{NB} := \pi_2^3(z_2).[x_{KB} := \pi_3^3(z_2)].\]
\[n_A = x_{NA}.[x_{KB} = K_B].\]
\[\textbf{end}("\text{"startB"}, n_A, x_{NB}, k_{AB}).\textbf{begin}("\text{"endB"}, n_A, x_{NB}, k_{AB}).\]
\[\overline{c} \langle \{ [n_A, x_{NB}] \} K_B \rangle \]
$P_B(SK_B, K_A)$ is

\[c(y_1).[z_1 := dec(SK_B, y_1)].\]
\[[x_{KA} := \pi_1^3(z_1)].[x_{NA} := \pi_2^3(z_1)].[x_{KAB} := \pi_3^3(z_1)].\]
\[[x_{KA} = K_A.(\nu n_B).\]
\[. \ o \ O \ (\text{start session with } K_A \text{ using } (x_{NA}, n_B, x_{KAB}))\]
\[\overline{c}\langle\{[x_{NA}, n_B, pk(SK_B)]\}_{K_A}\rangle.\]
\[c(y_3)[z_3 := dec(SK_B, y_3)].\]
\[[x_{NA2} := \pi_1^2(z_3)].[x_{NB} := \pi_2^2(z_3)].[x_{NA2} = x_{NA}].[x_{NB} = n_B].\]
\[. \ o \ O \ (\text{end session with } K_A \text{ using } (x_{NA}, n_B, x_{KAB}))\]
$P_B(SK_B, K_A)$ is

c(y_1).[z_1 := dec(SK_B, y_1)].
[x_{KA} := \pi_1^3(z_1)].[x_{NA} := \pi_2^3(z_1)].[x_{KAB} := \pi_3^3(z_1)].
[x_{KA} = K_A] (\nu n_B).
\text{begin}("startB", x_{NA}, n_B, x_{KAB}).
\bar{c}\langle\{[x_{NA}, n_B, pk(SK_B)]_K_A\}\rangle.
c(y_3)[z_3 := dec(SK_B, y_3)].
[x_{NA2} := \pi_1^2(z_3)].[x_{NB} := \pi_2^2(z_3)].[x_{NA2} = x_{NA}].[x_{NB} = n_B].
\text{end}("endB", x_{NA}, n_B, k_{AB}).
Key-establishment protocols are just one case where authentication is necessary.
In pure authentication protocols (entity authentication) two parties have established a connection. Party A wants to check that the other one is who A thinks it is.

- In a connectionless model of communication, entity authentication is used to check the liveness of the other party. Mutual authentication — both parties check each other’s liveness.
Basic tool for one-way entity authentication: challenge-response mechanism.

- A sends a new nonce to B.
- B transforms that nonce in a way that only B (or A) could do and sends back the result.
- A checks the result.
Let $Cert_X$ be the certificate of the verification key $pk(K_X)$ of the party X.

Alice checking Bob’s liveness:

$$
A \rightarrow B : N_A \\
B \rightarrow A : Cert_B, N_A, N_B, A, \left[\left\{ N_A, N_B, A \right\} \right]_{pk(K_B)}
$$

N_B is used to not let Alice completely control what is signed by Bob (otherwise K_B cannot be used for anything else).

(ISO Public Key Two-Pass Unilateral Authentication Protocol)

Exercise. Where do **begin** and **end** go?
Mutual authentication — two unilateral authentications:

1. \(A \rightarrow B : N_{A1} \)
2. \(B \rightarrow A : Cert_B, N_{A1}, N_B, A, [[N_{A1}, N_B, A]]_{pk(K_B)} \)
3. \(A \rightarrow B : Cert_A, N_B, N_{A2}, B, [[N_B, N_{A2}, B]]_{pk(K_A)} \)

A draft version of ISO Public Key Three-Pass Mutual Authentication Protocol.

- Simply two instances of the protocol on previous slide.
- Insecure.
1. $C(A) \rightarrow B : N_{A1}$

2. $B \rightarrow C(A) : \text{Cert}_B, N_{A1}, N_B, A, \{N_{A1}, N_B, A\}_{\text{pk}(K_B)}$

1'. $C(B) \rightarrow A : N_B$

2'. $A \rightarrow C(B) : \text{Cert}_A, N_B, N_{A2}, B, \{N_B, N_{A2}, B\}_{\text{pk}(K_A)}$

3. $C(A) \rightarrow B : \text{Cert}_A, N_B, N_{A2}, B, \{N_B, N_{A2}, B\}_{\text{pk}(K_A)}$

B thinks he has been the responder in a protocol session with A. A does not think that she has initiated a session with B.
A variant with no such attacks:

1. $A \rightarrow B : N_A$
2. $B \rightarrow A : \text{Cert}_B, N_A, N_B, A, \left[[N_A, N_B, A]^\text{pk}(K_B) \right]$
3. $A \rightarrow B : \text{Cert}_A, N_B, N_A, B, \left[[N_B, N_A, B]^\text{pk}(K_A) \right]$

But here B has a lot of control over the message signed by A.

Exercise. What if A and B were not under signature in messages 2 and 3?
1. \(A \rightarrow C \) : \(N_A \)
1'. \(C(A) \rightarrow B \) : \(N_A \)
2'. \(B \rightarrow C(A) \) : \(\text{Cert}_B, N_A, N_B, A, [\{ N_A, N_B \}]_{pk(K_B)} \)

2. \(C \rightarrow A \) : \(\text{Cert}_C, N_A, N_B, A, [\{ N_A, N_B \}]_{pk(K_C)} \)

3. \(A \rightarrow C \) : \(\text{Cert}_A, N_B, N_A, C, [\{ N_B, N_A \}]_{pk(K_A)} \)

3'. \(C(A) \rightarrow B \) : \(\text{Cert}_A, N_B, N_A, B, [\{ N_B, N_A \}]_{pk(K_A)} \)

B thinks he was the responder in a session initiated by A. A does not think she had initiated a session with B.
Entity authentication can be done using one-time passwords: A and B have agreed on a code-book $f : \{0, 1\}^n \rightarrow \{0, 1\}^*$.

1. A generates $r \in \{0, 1\}^n$, sends it to B.
2. B responds with $f(r)$.
3. A checks that it indeed received $f(r)$.

Care has to be taken to not repeat the challenge r.
Lamport’s one-time password scheme

Initialization: B chooses a password pw and $n \in \mathbb{N}$. Sends $(B, h^n(pw), n)$ to A over an authenticated channel.

- B puts $n_B := n$.
- A puts $pw' := h^n(pw)$.

One round:
1. A sends a notice to B.
2. B computes $r := h^{n_B-1}(pw)$, decrements n_B and sends r to A.
3. A checks that $h(r) = pw'$ and puts $pw' := r$.

This works as long as A and B are synchronized. Resynchronization again requires authentic channels.
S/KEY one-time password scheme

Initialization: B chooses a password pw and $n \in \mathbb{N}$. Sends $(B, h^n(pw), n)$ to A over an authenticated channel.
- A puts $n_A := n$.
- A puts $pw' := h^n(pw)$.

One round:
1. A sends the notice $n := n_A$ to B.
2. B computes $r := h^{n-1}(pw)$ and sends r to A.
3. A checks that $h(r) = pw'$, puts $pw' := r$ and $n_A := n - 1$.

Diffie-Hellman key exchange

Let G be a group with hard Diffie-Hellman problem. Let g generate G. Let $m = |G|$.

1. A chooses a random $a \in \mathbb{Z}_m$, sends $x = g^a$ to B.
2. B chooses a random $b \in \mathbb{Z}_m$, sends $y = g^b$ to A.
4. K is used as a common secret. ($h(K)$ may be a symmetric key)

This protocol needs authentication, too.
Exponentiation and spi-calculus

- Binary constructor $\text{exp} \in \Sigma$. Meaning: $\text{exp}(g, x) \equiv g^x$
- An equation: $\forall g, x, y : \text{exp}(\text{exp}(g, x), y) = \text{exp}(\text{exp}(g, y), x)$
- Possible messages are no longer free terms
 - Instead, we have a set of equations E.
 - This generates a congruence over the free terms
 - Messages are the congruence classes
- Makes things much harder for automatic analysers
Station-to-station protocol:

\[
A \rightarrow B : g^{N_A} \\
B \rightarrow A : g^{N_B}, \text{Cert}_B, \{[[g^{N_B}, g^{N_A}]]_{K_B}\} g^{N_A N_B} \\
A \rightarrow B : \text{Cert}_A, \{[[g^{N_A}, g^{N_B}]]_{K_A}\} g^{N_A N_B}
\]

Proposed by Diffie et al.
Aimed to have several security properties:
○ Mutual entity authentication.
○ Key agreement.
 ○ No third party knows the key.
○ Key confirmation.
 ○ The other party knows the key.
○ Perfect forward secrecy.
It does not quite achieve mutual authentication:

1. \(A \rightarrow C(B) : g^{N_A} \)

1'. \(C \rightarrow B : g^{N_A} \)

2'. \(B \rightarrow C : g^{N_B}, Cert_B, \left\{ \left[\left[g^{N_B}, g^{N_A} \right] \right]_{K_B} \right\} g^{N_{ANB}} \)

2. \(C(B) \rightarrow A : g^{N_B}, Cert_B, \left\{ \left[\left[g^{N_B}, g^{N_A} \right] \right]_{K_B} \right\} g^{N_{ANB}} \)

3. \(A \rightarrow C(B) : Cert_A, \left\{ \left[\left[g^{N_A}, g^{N_B} \right] \right]_{K_A} \right\} g^{N_{ANB}} \)

At this point \(A \) thinks she was the initiator in a session with \(B \).
But \(B \) does not think he was a responder in a session with \(A \).
The secrecy of \(g^{N_{ANB}} \) is not violated.
Identities of parties inside the signed messages would have helped.
Neumann-Stubblebine key exchange protocol.
A TTP T generates a new key for A and B.
Let K_{XT} be the (long-term) symmetric key shared by X and T.

1. $A \rightarrow B : A, N_A$
2. $B \rightarrow T : B, N_B, \{A, N_A, T_B\}_{K_{BT}}$
3. $T \rightarrow A : N_B, \{B, N_A, K_{AB}, T_B\}_{K_{AT}}, \{A, K_{AB}, T_B\}_{K_{BT}}$
4. $A \rightarrow B : \{A, K_{AB}, T_B\}_{K_{BT}}, \{N_B\}_{K_{AB}}$

T_B is a timestamp.
A similarity:

1. $A \rightarrow B : A, N_A$
2. $B \rightarrow T : B, N_B, \{A, N_A, T_B\}_{K_{BT}}$
3. $T \rightarrow A : N_B, \{B, N_A, K_{AB}, T_B\}_{K_{AT}}, \{A, K_{AB}, T_B\}_{K_{BT}}$
4. $A \rightarrow B : \{A, K_{AB}, T_B\}_{K_{BT}}, \{N_B\}_{K_{AB}}$
Attack through a type flaw:

1. $C(A) \rightarrow B : A, N_A$
2. $B \rightarrow C(T) : B, N_B, \{A, N_A, T_B\}_{K_{BT}}$
4. $C(A) \rightarrow B : \{A, N_A, T_B\}_{K_{BT}}, \{N_B\}_{N_A}$

where $N_A \in \text{Keys}_{sym} \cap \text{Nonce}$.

B thinks he has agreed on key K_A with A. A has no idea.
Otway-Rees key exchange protocol:

1. $A \rightarrow B : N, A, B, \{N_A, N, A, B\}_{K_{AT}}$
2. $B \rightarrow T : N, A, B, \{N_A, N, A, B\}_{K_{AT}}, \{N_B, N, A, B\}_{K_{BT}}$
3. $T \rightarrow B : \{N_A, K_{AB}\}_{K_{AT}}, \{N_B, K_{AB}\}_{K_{BT}}$
4. $B \rightarrow A : \{N_A, K_{AB}\}_{K_{AT}}$
Possible type confusion:

1. \(A \rightarrow B : N, A, B, \{ \{ N_A, N, A, B \} \}_{K_{AT}}\)
2. \(B \rightarrow T : N, A, B, \{ \{ N_A, N, A, B \} \}_{K_{AT}}, \{ \{ N_B, N, A, B \} \}_{K_{BT}}\)
3. \(T \rightarrow B : \{ \{ N_A, K_{AB} \} \}_{K_{AT}}, \{ \{ N_B, K_{AB} \} \}_{K_{BT}}\)
4. \(B \rightarrow A : \{ \{ N_A, K_{AB} \} \}_{K_{AT}}\)

The triple \((N, A, B)\) masquerading as a key may be from some old session.
Further reading:

Chapter 12.1–12.6 and 12.9 of

Menezes, van Oorschot, Vanstone.
Handbook of Applied Cryptography.

(available on-line)