Bulletproofs

10.12.2019
Random self-reducibility of DL

- Let us have a cyclic group G of size $p \in \mathbb{P}$
- Suppose that we have a machine O that takes two elements of G and outputs an element of \mathbb{Z}_p, such that

$$\Pr[g^x = h \mid g, h \leftarrow G, x \leftarrow O(g, h)] \geq 5\%$$

(probabilities over the choices of g, h, and the randomness used by O)

- Exercise. You are given some $g, h \in G$. You have access to O. Find $\log_g h$
Discrete Log Relations

- Fix n. Suppose that we have a machine O that takes n elements of G and outputs n elements of \mathbb{Z}_p, such that

$$\Pr \left[g_1^{x_1} \cdots g_n^{x_n} = 1 \mid \exists i : x_i \neq 0 \right]$$

is non-negligible, where probabilities are over the choice of g_1, \ldots, g_n and the randomness used by O.

- **Exercise.** You are given some $g, h \in G$. You have access to O. Find $\log_g h$.
Commitments to vectors

Pedersen commitments
- Group \mathbb{G}, size p, elements $g, h \in \mathbb{G}$ with unknown $\log g h$
- $\text{Com}(x; r) = g^x h^r$
- To open, give x and r

Pedersen vector commitments
- Commitments to elements of \mathbb{Z}_p^n
- Elements $g_1, \ldots, g_n, h \in \mathbb{G}$ with no known non-trivial discrete log relations
- $\text{Com}(x_1, \ldots, x_n; r) = g_1^{x_1} \cdots g_n^{x_n} h^r$
- Opening: give x_1, \ldots, x_n, r
- Homomorphic (for operations on vectors)
Committing to a polynomial

Functionality

- P becomes bound to a polynomial $f \in \mathbb{Z}_p[X]$
- V picks a value $x \in X$
- P gives $f(x)$ to V and convinces him of its correctness

Implementation

A simple implementation is sufficient for us:

- P commits to all coefficients of f, using Pedersen commitments
- V sends x to P
- Both compute commitment to $f(x)$, as the linear combination of commitments to coefficients
- P opens $f(x)$ to V
Multi-round arguments

- We have a protocol, where P and V exchange many messages.
- Similarly to Σ-protocols:
 - P sends the first and the last message.
 - Each time, V reacts by generating a random value and sending it to P.
- ZK — given the instance and V’s challenges in all rounds, generate a transcript.
- Soundness: by rewinding many times at different places, extract the witness.
 - Total number of rewindings must be “small”.
 - The “fork” must have only a polynomial number of prongs.
- Fiat-Shamir heuristic is applicable.
Inner product argument

- Cyclic group G of size $p \in \mathbb{P}$
- Public elements $g_1, \ldots, g_n, h_1, \ldots, h_n, P \in G$, $c \in \mathbb{Z}_p$
 - $g_1, \ldots, g_n, h_1, \ldots, h_n$ come from the CRS
 - No known non-trivial discrete log relations among all g_i, h_i
- P wants to convince V that he knows $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}_p$, such that
 \[
 \prod_{i=1}^{n} g_i^{a_i} h_i^{b_i} = P \quad \text{and} \quad \sum_{i=1}^{n} a_i b_i = c
 \]

- Privacy is not important
- Can we be more efficient than P just sending over all a_i, b_i?
Modified inner product argument

- Public elements $g_1, \ldots, g_n, h_1, \ldots, h_n, P, u \in G$
 - $g_1, \ldots, g_n, h_1, \ldots, h_n, u$ come from the CRS
 - No known non-trivial discrete log relations among u and all g_i, h_i
- P wants to convince V that he knows $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}_p$, such that
 \[u \sum_{i=1}^n a_i b_i \cdot \prod_{i=1}^n g_i^{a_i} h_i^{b_i} = P \]
- Privacy is still not important
Reduction from modified to original argument

To make the original argument:

- V picks a random $x \in \mathbb{Z}_p$, sends it to P;
- Run the modified protocol with

$$P \leftarrow P_{\text{orig}} \cdot u^{x \cdot c_{\text{orig}}}$$

$$u \leftarrow u_{\text{CRS}}^x$$

Exercise. Soundness. Assume you can extract witness from the modified protocol
The protocol

- Let $m = n/2$. P computes and sends to V:

 $$L = u \sum_{i=1}^{m} a_i b_{i+m} \cdot \prod_{i=1}^{m} g_i^{a_i} h_i^{b_{i+m}}$$

 $$R = u \sum_{i=1}^{m} a_{i+m} b_i \cdot \prod_{i=1}^{m} g_i^{a_{i+m} h_i^{b_i}}$$

- V sends random challenge $x \leftarrow Z_p$

- P sends $a'_i = x a_i + x^{-1} a_{i+m}$ and $b'_i = x^{-1} b_i + x b_{i+m}$ to V for $1 \leq i \leq m$

- V checks

 $$L^x P R^{x^{-2}} \overset{?}= u \sum_{i=1}^{m} a'_i b'_i \cdot \prod_{i=1}^{m} g_i^{x^{-1} a'_i} g_i^{a'_i} g_{i+m} h_i^{xb'_i} h_i^{x^{-1} b'_i}$$

Exercise. Correctness?
Recursion

- P has to convince V that he knows a'_i, b'_i, such that

$$L^{x^2} PR^{x^{-2}} \overset{?}{=} u \sum_{i=1}^{m} a'_i b'_i \cdot \prod_{i=1}^{m} g_i^{-a'_i} x^{a'_i} g_{i+m} h_i x^{b'_i} h_{i+m}^{x^{-1} b'_i}$$

$$= u \sum_{i=1}^{m} a'_i b'_i \cdot \prod_{i=1}^{m} (g_i^{-a'_i} g_{i+m}^{x^{-1}})^{a'_i} (h_i^{x} h_{i+m}^{x^{-1}})^{b'_i}$$

- The same inner product argument, same u, changed P, new g_i, h_i, halved n
- Do $\log n$ steps, P sends two elements of \mathbb{G} at each step
Soundness

- Get a forked transcript

\[L, R, x_I, \vec{a}'_I, \vec{b}'_I, x_{II}, \vec{a}'_{II}, \vec{b}'_{II}, x_{III}, \vec{a}'_{III}, \vec{b}'_{III}, x_{IV}, \vec{a}'_{IV}, \vec{b}'_{IV} \]

where \(x_I^2, x_{II}^2, x_{III}^2, x_{IV}^2 \) are all different

- They satisfy (for \(q \in \{I, II, III, IV\} \))

\[L x_q^2 PR x_q^{-2} = u \sum_{i=1}^{m} a'_{q,i} b'_{q,i} \prod_{i=1}^{m} \left(g_i x_q^{-1} g_{i+m} \right)^{a'_{q,i}} \left(h_i x_q^{x_q^{-1}} h_{i+m} \right)^{b'_{q,i}} \]

- Let \(\nu_I, \nu_{II}, \nu_{III} \) satisfy

\[\sum_{q=1}^{III} \nu_q x_q^2 = 1 \quad \sum_{q=1}^{III} \nu_q = 0 \quad \sum_{q=1}^{III} \nu_q x_q^{-2} = 0 \]
Linear combination gives...

\[
L = \prod_{q=1}^{III} L_{q}^{x_{q}^{2}} P_{q}^{\nu_{q}} R_{q}^{\nu_{q}x_{q}^{-2}} \\
= \prod_{q=1}^{III} \left(u \sum_{i=1}^{m} a'_{q,i} b'_{q,i} \right) \prod_{i=1}^{m} \left(g_{i}^{x_{q}^{-1}} g_{i+m}^{x_{q}} \right)^{a'_{q,i}} \left(h_{i}^{x_{q}} h_{i+m}^{x_{q}^{-1}} \right)^{b'_{q,i}} \\
= u \sum_{q=1}^{III} \left(\sum_{i=1}^{m} \nu_{q} a'_{q,i} b'_{q,i} \right) \prod_{i=1}^{m} g_{i}^{x_{q}^{-1}} a'_{q,i} h_{i}^{x_{q}} b'_{q,i} \prod_{i=1}^{m} g_{i+m}^{x_{q}} a'_{q,i} \left(\sum_{q=1}^{III} \nu_{q} b'_{q,i} \right) \left(\sum_{q=1}^{III} \nu_{q} x_{q}^{-1} b'_{q,i} \right) \\
= u^{c_{L}} \prod_{j=1}^{n} g_{j}^{a_{L,j}} h_{j}^{b_{L,j}}
\]
Representations of L, R, P

- If we let ν_1, ν_{II}, ν_{III} satisfy different systems of linear equations, we will also get

$$R = u^{c_R} \cdot \prod_{j=1}^{n} g_{j}^{a_{R,j}} h_{j}^{b_{R,j}}$$

$$P = u^{c_P} \cdot \prod_{j=1}^{n} g_{j}^{a_{P,j}} h_{j}^{b_{P,j}}$$

- The representation of P almost looks like a witness
 - It would be a witness, if $c_P = \sum_{j=1}^{n} a_{P,j} b_{P,j}$
Verification equation again

q ranges over $\{I, II, III, IV\}$

\[
\sum_{i=1}^{m} a'_{q,i} b'_{q,i} \cdot \prod_{i=1}^{m} g_{i}^{a'_{q,i} x_{q}^{-1}} h_{i}^{b'_{q,i} x_{q}} \prod_{i=1}^{m} g_{i+m}^{a'_{q,i} x_{q}} h_{i+m}^{b'_{q,i} x_{q}^{-1}} =
\]

\[
L_{q}^{x_{q}^{2}} PR_{q}^{x_{q}^{-2}} =
\]

\[
u^{c_{L} x_{q}^{2} + c_{P} + c_{R} x_{q}^{-2}} \prod_{j=1}^{n} g_{i}^{a_{L,j} x_{q}^{2} + a_{P,j} + a_{R,j} x_{q}^{-2}} h_{j}^{b_{L,j} x_{q}^{2} + b_{P,j} + b_{R,j} x_{q}^{-2}}
\]

The powers of u, g_j, h_j have to be equal (or we have a non-trivial discrete log relation)
Equal exponents

\[c_L x_q^2 + c_P + c_R x_q^{-2} = \sum_{i=1}^{m} a'_{q,i} b'_{q,i} \]
\[a_L, i x_q^2 + a_P, i + a_R, i x_q^{-2} = a'_{q,i} x_q^{-1} \]
\[a_L, i+m x_q^2 + a_P, i+m + a_R, i+m x_q^{-2} = a'_{q,i} x_q \]
\[b_L, i x_q^2 + b_P, i + b_R, i x_q^{-2} = b'_{q,i} x_q \]
\[b_L, i+m x_q^2 + b_P, i+m + b_R, i+m x_q^{-2} = b'_{q,i} x_q^{-1} \]

Take \(x_q \) times the 2nd/5th equation, \(x_q^{-1} \) times the 3rd/4th equation and subtract:

\[a_{L,i} x_q^3 + (a_{P,i} - a_{L,i+m}) x_q + (a_{R,i} - a_{P,i+m}) x_q^{-1} - a_{R,i+m} x_q^{-3} = 0 \]
\[b_{L,i+m} x_q^3 + (b_{P,i+m} - b_{L,i}) x_q + (b_{R,i+m} - b_{P,i}) x_q^{-1} - b_{R,i} x_q^{-3} = 0 \]

These must be zero polynomials
$\overrightarrow{a}_P, \overrightarrow{b}_P$ is the witness

\[a'_{q,i} = a_{P,i}x_q + a_{P,i+m}x_q^{-1} \quad b'_{q,i} = b_{P,i}x_q^{-1} + b_{P,i+m}x_q \]

\[
\sum_{i=1}^{m} a'_{q,i}b'_{q,i} = \sum_{i=1}^{m} \left(a_{P,i}x_q + a_{P,i+m}x_q^{-1} \right) \left(b_{P,i}x_q^{-1} + b_{P,i+m}x_q \right)
\]

\[= x_q^2 \sum_{i=1}^{m} a_{P,i}b_{P,i+m} + \sum_{j=1}^{n} a_{P,j}b_{P,j} + x_q^{-2} \sum_{i=1}^{m} a_{P,i+m}b_{P,i} \]

\[
\sum_{i=1}^{m} a'_{q,i}b'_{q,i} = c_L x_q^2 + c_P + c_R x_q^{-2}
\]

These polynomials have to be equal
Soundness of recursive protocol

- To get a witness of length n, we need four executions (and witnesses) of length $n/2$
- To get a witness of length $n/2$, we need four executions (and witnesses) of length $n/4$
- etc.
- To get a witness of length n, we need $4^\log_2 n \approx n^2$ executions
Representing arithmetic circuits

- There are \(n \) (binary) multiplication gates
 - \(i \)-th one has inputs \(a_{L,i} \) and \(a_{R,i} \), output \(a_{O,i} \)
 - These three values per multiplication gate are the witness
- There are \(Q \) affine relationships between \(a_{L,i} \), \(a_{R,i} \), \(a_{O,i} \)

\[
\sum_{i=1}^{n} w_{L,q,i} a_{L,i} + \sum_{i=1}^{n} w_{R,q,i} a_{R,i} + \sum_{i=1}^{n} w_{O,q,i} a_{O,i} = c_q
\]

\((1 \leq q \leq Q)\)
- All coefficients \(w_{?,q,i} \) and \(c_q \) are part of the instance
Start of the protocol

- CRS contains $g_1, \ldots, g_n, h_1, \ldots, h_n, h \in \mathbb{G}$
- P picks $\alpha, \beta \leftarrow \mathbb{Z}_p$; computes and sends to V

$$A_I = h^{\alpha} \cdot \prod_{i=1}^{n} g_{i}^{a_{L,i}} h_{i}^{a_{R,i}}$$

$$A_O = h^{\beta} \cdot \prod_{i=1}^{n} g_{i}^{a_{O,i}}$$
Many equations to one

\[a_{L,i}a_{R,i} - a_{O,i} = 0 \]

\[
\sum_{i=1}^{n} w_{L,q,i} a_{L,i} + \sum_{i=1}^{n} w_{R,q,i} a_{R,i} + \sum_{i=1}^{n} w_{O,q,i} a_{O,i} = c_q
\]

Turn it to a single polynomial equation (variables \(Y, Z\))

\[
\sum_{q=1}^{Q} \left(\sum_{i=1}^{n} w_{L,q,i} a_{L,i} + \sum_{i=1}^{n} w_{R,q,i} a_{R,i} + \sum_{i=1}^{n} w_{O,q,i} a_{O,i} \right) Z^q + \\
\sum_{i=1}^{n} (a_{L,i}a_{R,i} - a_{O,i}) Y^{i-1} = \sum_{q=1}^{Q} c_q Z^q
\]

\(\because\) \(V\) picks \(y, z \leftarrow \mathbb{Z}_p\), sends them to \(P\)
Arguments with polynomials...

- P substitutes y, z for Y, Z
- Define polynomials $\ell_i(X), r_i(X) \ (1 \leq i \leq n)$ so, that
 - (also define $t(X) = \sum_i \ell_i(X)r_i(X)$)
 - The coefficient of X^2 in $t(X)$ is the LHS of the equation on previous page (almost)
- For given $x \in \mathbb{Z}_p$, the verifier can compute something like
 $$h^{\text{smth}.} \cdot \prod_{i=1}^{n} g_i^{\ell_i(x)} h_i^{r_i(x)}$$
 (like a commitment)

- P commits to $t(X)$. Shows, the coefficient of X^2 is $\approx \sum_q z^q c_q$
- V challenges with $x \leftarrow \mathbb{Z}_p$
- P opens $\ell_i(x), r_i(x)$ for all i
- P also opens $t(x)$. V checks that $t(x) = \sum_i \ell_i(x)r_i(x)$
The polynomials

\[\ell_i(X) = a_{L,i}X + a_{O,i}X^2 + y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i} z^q \right) X \]

\[r_i(X) = y^{-i} a_{R,i}X - y^{-i} + \left(\sum_{q=1}^{Q} w_{L,q,i} z^q \right) X + \left(\sum_{q=1}^{Q} w_{O,q,i} z^q \right) \]

Exercise. Compute coefficient of \(X^2 \) in \(t(X) \)
Committing to t and opening

- P commits to coefficients of X, X^3
- V computes the commitment to the coefficient of X^2 himself
 - Using h^0 as the blinding factor
- V sends the challenge x
- P sends $t(x)$ to V, as well as the blinding exponent
 - Computed from the blinding exponents of the coefficients
Commitment to polynomials ℓ_i, r_i

$$\ell_i(x) = a_{L,i}x + a_{O,i}x^2 + y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i}z^q \right) x$$

$$r_i(x) = y^{i-1}a_{R,i}x - y^{i-1} + \left(\sum_{q=1}^{Q} w_{L,q,i}z^q \right) x + \left(\sum_{q=1}^{Q} w_{O,q,i}z^q \right)$$

The commitment, computed by V, is

$$A_I^x \cdot A_O^{x^2} \cdot \prod_{i=1}^{n} g_i \quad y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i}z^q \right) x - y^{i-1} + \left(\sum_{q=1}^{Q} w_{L,q,i}z^q \right) x + \left(\sum_{q=1}^{Q} w_{O,q,i}z^q \right) \ldots$$

...but not quite...
Change the CRS

- Think of the CRS containing $h'_i = h_i^{y_i-1}$, instead of h_i
- Then A_i^x contains $h'_i y_i^{-1} a_{R,i}$ as a factor
- The whole commitment C is

$$A_1^x \cdot A_2^x \cdot \prod_{i=1}^{n} g_i \cdot y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i} z_q \right) x - y_i^{-1} + \left(\sum_{q=1}^{Q} w_{L,q,i} z_q \right) x + \left(\sum_{q=1}^{Q} w_{O,q,i} z_q \right)$$

- The blinding exponent of Pedersen’s commitment is $\alpha x + \beta x^2$
- P opens C as $\ell_1(x), r_1(x), \ldots, \ell_n(x), r_n(x)$
Blinding

- Problem: \(\ell_i(x), r_i(x), t(x) \) leak about \(a_{L,i}, a_{R,i}, a_{O,i} \)
- In the beginning, \(P \) also generates \(\vec{s}_L, \vec{s}_R \in \mathbb{Z}_p^n \)
- Commits to them:
 - Generates \(\rho \leftarrow \mathbb{Z}_p \)
 - Sends \(A_S = h^\rho \cdot \prod_{i=1}^n g_i^{s_{L,i}} h_i^{s_{R,i}} \) to \(V \), together with \(A_I \) and \(A_O \)
Blinding of ℓ_i, r_i

\[
\ell_i(X) = a_{L,i}X + a_{O,i}X^2 + y^{-i+1} \left(\sum_{q=1}^{Q} w_{R,q,i}z^q \right) X \\
+ s_{L,i}X^3
\]

\[
r_i(X) = y^{i-1}a_{R,i}X - y^{i-1} + \left(\sum_{q=1}^{Q} w_{L,q,i}z^q \right) X + \left(\sum_{q=1}^{Q} w_{O,q,i}z^q \right) \\
+ y^{i-1}s_{R,i}X^3
\]
Changes to the construction, due to blinding

- Polynomial t: now has degree 6
 - No change to coefficient of X^2
- Commitment C includes the factor A_3^3
 - ...and the blinding exponent adds ρx^3