1. Implement Schnorr group, that is, generate primes p, q, and a group element g, such that $p = kq + 1$ and g generates an order q multiplicative subgroup of \mathbb{Z}_p^*.

2. Is the following assumption secure? If yes, reduce it to a known assumption (DLOG, DDH, CDH), otherwise find an attack. Adversary gets g^a and g^b as an input (like in CDH) and it should be computationally hard to output group elements $A \neq 1$ and $B \neq 1$ such that $A^a \cdot B^b = 1$.

3. For a fixed security parameter κ, assume we have algorithm \mathcal{A} that runs in time T and solves discrete logarithm with probability 0.01.
 (a) Construct an algorithm \mathcal{B} that uses \mathcal{A} to solve CDH with the same parameter κ.
 (b) How to increase the success probability?
 (c) Give a lower bound for the success probability of \mathcal{B}.
 (d) If all group operations take time 1, how much time does \mathcal{B} take in total?

4. Is the following assumption secure? If yes, reduce it to a known assumption (DLOG, DDH, CDH), otherwise find an attack. Adversary gets g^a and g^b as an input (like in CDH) and it should be computationally hard to output $g^{(ab)^2}$.