UP TO NOW
UP TO NOW

- Introduction to the field
UP TO NOW

- Introduction to the field
- Secure computation protocols
UP TO NOW

- Introduction to the field
- Secure computation protocols
- Introduction to malicious model
UP TO NOW

- Introduction to the field
- Secure computation protocols
- Introduction to malicious model
- Σ-protocols
THIS TIME
Σ-protocols: short reminder
THIS TIME

- Σ-protocols: short reminder
- Continuing with OR rule
THIS TIME

- Σ-protocols: short reminder
- Continuing with OR rule
- Σ-protocol for Boolean circuits / NP
THIS TIME

- Σ-protocols: short reminder
- Continuing with OR rule
- Σ-protocol for Boolean circuits / NP
- Constructing interactive zero knowledge protocols from Σ-protocols
THIS TIME

- Σ-protocols: short reminder
- Continuing with OR rule
- Σ-protocol for Boolean circuits / \mathbf{NP}
- Constructing interactive zero knowledge protocols from Σ-protocols
 - only beginning of this...
THIS TIME

❖ Σ-protocols: short reminder
❖ Continuing with OR rule
❖ Σ-protocol for Boolean circuits / NP
❖ Constructing interactive zero knowledge protocols from Σ-protocols
 ❖ only beginning of this...
❖ Useful tool: commitment schemes
THIS TIME

- Σ-protocols: short reminder
- Continuing with OR rule
- Σ-protocol for Boolean circuits / NP
- Constructing interactive zero knowledge protocols from Σ-protocols
 - only beginning of this...
- Useful tool: commitment schemes
- Σ-protocol = trapdoor commitment scheme (kind of)
REMINDER: Σ-PROTOCOLS
REMINDER: Σ-PROTOCOLS
REMINDER: Σ-PROTOCOLS

1st message: commitment a
REMINDER: Σ-PROTOCOLS

1st message: commitment a

2nd message: challenge c

x, ω
REMINDER: Σ-PROTOCOLS

1st message: commitment a

2nd message: challenge c

3rd message: response z
REMINDER: Σ-PROTOCOLS

1st message: commitment a

2nd message: challenge c

3rd message: response z

Accepts iff prover knows ω such that $(x, \omega) \in R$
REMINDER: Σ-PROTOCOLS

- 1st message: commitment a
- 2nd message: challenge c
- 3rd message: response z

Requirement: c is chosen from publicly known challenge set C randomly. (Does not depend on a!)

Terminology: public coin protocol

Accepts iff prover knows ω such that $(x, \omega) \in R$
REMINDER: Σ-PROTOCOLS

1. Completeness
2. Special Soundness
3. Special Honest-Verifier ZK
Assume wlog that P knows ω s.t. $R_1(x, \omega)$

Goal: construct protocol (P, V) for $PK(\omega: R_1(x, \omega) \lor R_2(x, \omega))$
OR-PROOF

Assume wlog that P knows ω s.t. $R_1(x, \omega)$

$(x, \omega) \vdash R_1(x, \omega)$

$\begin{align*}
a_1 &\leftarrow P_1(x; r) \\
c_2 &\leftarrow C \\
(a_2, z_2) &\leftarrow S_2(c_2)
\end{align*}$

Goal: construct protocol (P, V) for PK $(\omega: R_1(x, \omega) \lor R_2(x, \omega))$
OR-PROOF

Assume wlog that P knows ω s.t. $R_1(x, \omega)$

Goal: construct protocol (P, V) for PK $(\omega: R_1(x, \omega) \lor R_2(x, \omega))$
Assume wlog that P knows ω s.t. $R_1(x, \omega)$

$(x, \omega): R_1(x, \omega)$

$\begin{align*}
a_1 &\leftarrow P_1(x; r) \\
c_2 &\leftarrow C \\
(a_2, z_2) &\leftarrow S_2(c_2)
\end{align*}$

$c \leftarrow C = \{0, \ldots, |C| - 1\}$

(a_1, a_2)

x

Goal: construct protocol (P, V) for PK $(\omega: R_1(x, \omega) \lor R_2(x, \omega))$
OR-PROC

\((x, \omega): R_1(x, \omega) \)

Let \(\omega \) s.t. \(R_1(x, \omega) \)

\[a_1 \leftarrow P_1(x; r) \]
\[c_2 \leftarrow C \]
\[(a_2, z_2) \leftarrow S_2(c_2) \]

\[c_1 \leftarrow c - c_2 \mod |C| \]
\[z_1 \leftarrow P_1(x, \omega, c_1; r) \]

Assume wlog that \(P \) knows \(\omega \) s.t. \(R_1(x, \omega) \)

\(x \)

Goal: construct protocol \((P, V)\) for PK \((\omega: R_1(x, \omega) \lor R_2(x, \omega))\)
OR-PROOF

\((x, \omega): R_1(x, \omega)\)

\(a_1 \leftarrow P_1(x; r)\)

\(c_2 \leftarrow C\)

\((a_2, z_2) \leftarrow S_2(c_2)\)

\(c \leftarrow C = \{0, ..., |C| - 1\}\)

\(c_1 \leftarrow c - c_2 \mod |C|\)

\(z_1 \leftarrow P_1(x, \omega, c_1; r)\)

\((c_1, z_1, z_2)\)

Goal: construct protocol \((P, V)\) for PK \((\omega: R_1(x, \omega) \lor R_2(x, \omega))\)

Assume wlog that \(P\) knows \(\omega\) s.t. \(R_1(x, \omega)\)
(x, ω): $R_1(x, ω)$

$\begin{align*}
a_1 &\leftarrow P_1(x; r) \\
c_2 &\leftarrow C \\
(a_2, z_2) &\leftarrow S_2(c_2)
\end{align*}$

$c \leftarrow C = \{0, \ldots, |C| - 1\}$

$c_1 \leftarrow c - c_2 \mod |C|$

$z_1 \leftarrow P_1(x, ω, c_1; r)$

$c_2 \leftarrow c - c_1 \mod |C|$

Accept if $c_1 < |C|$ and both $V_1(x, a_1, c_1, z_1)$ and $V_2(x, a_2, c_2, z_2)$ accept

Goal: construct protocol (P, V) for PK $(ω: R_1(x, ω) \lor R_2(x, ω))$
SECURITY PROOF

✧ I will not give a full security proof, but it is simple
✧ **Completeness:** from completeness of first PK, and successful simulation of the second one
✧ **Special soundness:** OR-extractor runs extractors for both branches. **One** of them is successful, return this value
✧ **SHVZK:** since the first PK is SHVZK, and the second one is already simulated
POK: ELGAMAL PLAINTEXT IS BOOLEAN

\[L = \{ (g, h, e_1, e_2), \text{s.t. } (e_1, e_2) = (g^\mu h^\rho, g^\rho) \text{ for some } \rho \in \mathbb{Z}_p, \mu \in \{0, 1\} \} \]

We depict prover when \(\mu = 0 \); \(\mu = 1 \) is dual.
POK: ELGAMAL Plaintext is Boolean

\[L = \{(g, h, e_1, e_2), \text{s.t. } (e_1, e_2) = (g^\mu h^\rho, g^\rho) \text{ for some } \rho \in \mathbb{Z}_p, \mu \in \{0, 1\}\} \]

1. \(r \leftarrow \mathbb{Z}_p \)
2. \((a_{11}, a_{12}) \leftarrow (h, g)^r \) // Real branch
3. \(c_2 \leftarrow C; z_2 \leftarrow \mathbb{Z}_p \) // Simulated branch
4. \((a_{21}, a_{22}) \leftarrow (h, g)^{z_2} / (e_1 / g^1, e_2)^{c_2} \)

We depict prover when \(\mu = 0 \); \(\mu = 1 \) is dual

\((g, h, e_1, e_2), (\mu, \rho)\)
POK: ELGAMAL PLAINTEXT IS BOOLEAN

\[L = \{ (g, h, e_1, e_2), \text{s.t.} (e_1, e_2) = (g^\mu h^\rho, g^\rho) \text{ for some } \rho \in \mathbb{Z}_p, \mu \in \{0, 1\} \} \]

1. \(r \leftarrow \mathbb{Z}_p \)
2. \((a_{11}, a_{12}) \leftarrow (h, g)^r \) // Real branch
3. \(c_2 \leftarrow C; z_2 \leftarrow \mathbb{Z}_p \) // Simulated branch
4. \((a_{21}, a_{22}) \leftarrow (h, g)^{z_2} / (e_1 / g^t, e_2)^{c_2} \)

We depict prover when \(\mu = 0; \mu = 1 \) is dual
POK: ELGAMAL PLAINTEXT IS BOOLEAN

\[L = \{(g, h, e_1, e_2), \text{s.t. } (e_1, e_2) = (g^\mu h^q, g^q) \text{ for some } q \in \mathbb{Z}_p, \mu \in \{0, 1\}\} \]

1. \(r \leftarrow \mathbb{Z}_p \)
2. \((a_{11}, a_{12}) \leftarrow (h, g)^r \text{ // Real branch} \)
3. \(c_2 \leftarrow C; z_2 \leftarrow \mathbb{Z}_p \text{ // Simulated branch} \)
4. \((a_{21}, a_{22}) \leftarrow (h, g)^{z_2} / (e_1 / g^1, e_2)^{c_2} \)

We depict prover when \(\mu = 0 \); \(\mu = 1 \) is dual

\[(g, h, e_1, e_2) \]

\[(a_{11}, a_{12}, a_{21}, a_{22}) \]

\[c \leftarrow C \]
POK: ELGAMAL PLAINTEXT IS BOOLEAN

\[L = \{(g, h, e_1, e_2), \text{s.t. } (e_1, e_2) = (g^\mu h^\rho, g^\rho) \text{ for some } \rho, \mu \in \mathbb{Z}_p, \mu \in \{0, 1\}\} \]

1. \(r \leftarrow \mathbb{Z}_p \)
2. \((a_{11}, a_{12}) \leftarrow (h, g)^r \) // Real branch
3. \(c_2 \leftarrow C; z_2 \leftarrow \mathbb{Z}_p \) // Simulated branch
4. \((a_{21}, a_{22}) \leftarrow (h, g)^{z_2}/(e_1/g^1, e_2)^{c_2} \)

\((g, h, e_1, e_2), (\mu, \rho) \rightarrow (a_{11}, a_{12}, a_{21}, a_{22}) \)

\(c \leftarrow C \)

\(c_1 \leftarrow c - c_2 \text{ mod } |C| \)

\(z_1 \leftarrow c_1 \rho + r_1 \)

We depict prover when \(\mu = 0; \mu = 1 \) is dual
POK: ELGamal Plaintext is Boolean

$L = \{(g, h, e_1, e_2), \text{s.t. } (e_1, e_2) = (g^\mu h^q, g^q) \text{ for some } q \in \mathbb{Z}_p, \mu \in \{0, 1\}\}$

1. $r \leftarrow \mathbb{Z}_p$
2. $(a_{11}, a_{12}) \leftarrow (h, g)^r$ // Real branch
3. $c_2 \leftarrow C; z_2 \leftarrow \mathbb{Z}_p$ // Simulated branch
4. $(a_{21}, a_{22}) \leftarrow (h, g)^{z_2} / (e_1 / g^1, e_2)^{c_2}$

(g, h, e_1, e_2)

$(a_{11}, a_{12}, a_{21}, a_{22})$

$c \leftarrow C$

$c_1 \leftarrow c - c_2 \mod |C|$

$z_1 \leftarrow c_1 \cdot q + r_1$

(c_1, z)

We depict prover when $\mu = 0$; $\mu = 1$ is dual.
POK: ELGAMAL PLAINTEXT IS BOOLEAN

\[L = \{(g, h, e_1, e_2), \text{s.t. } (e_1, e_2) = (g^\mu h^q, g^q) \text{ for some } q \in \mathbb{Z}_p, \mu \in \{0, 1\}\} \]

1. \(r \leftarrow \mathbb{Z}_p \)
2. \((a_{11}, a_{12}) \leftarrow (h, g)^r \) // Real branch
3. \(c_2 \leftarrow C; z_2 \leftarrow \mathbb{Z}_p \) // Simulated branch
4. \((a_{21}, a_{22}) \leftarrow (h, g)^{z_2} / (e_1 / g^1, e_2)^{c_2} \)

We depict prover when \(\mu = 0 \); \(\mu = 1 \) is dual.

\((g, h, e_1, e_2) \)

\((a_{11}, a_{12}, a_{21}, a_{22}) \)

\(c \leftarrow C \)

\(c_1 \leftarrow c - c_2 \mod |C| \)

\(z_1 \leftarrow c_1 q + r_1 \)

\((c_1, z) \)

\(c_2 \leftarrow c - c_1 \mod |C| \)

Accept if \(c_1 \in C, \)
\[(h, g)^{z_1} = (a_{11}, a_{12})(e_1, e_2)^{c_1}, \]
\[(h, g)^{z_2} = (a_{21}, a_{22})(e_1/g, e_2)^{c_2} \]
BETTER WITH ADDITIVE/VECTOR NOTATION

\[L = \{ (g \in \mathbb{G}^2, \ e \in \mathbb{G}^2) : \exists (\mu \in \{0,1\}, \ \varrho), \ e = \Enc_g(\mu; \ \varrho) = \mu (g_0) + \varrho g \} \]

1. \(r_1 \leftarrow \mathbb{Z}_p \)
2. \(a_1 \leftarrow r_1 g \)
3. \(c_2 \leftarrow C; \ z_2 \leftarrow \mathbb{Z}_p \)
4. \(a_2 \leftarrow z_2 g - c_2 (e - (g_0)) \)

We depict prover when \(\mu = 0; \mu = 1 \) is dual

\((g, e) \)

\((a_1, a_2) \)

\(c \leftarrow C \)

\(c_1 \leftarrow c - c_2 \mod |C| \)

\(z_1 \leftarrow c_1 \varrho + r_1 \)

Accept if \(c_1 \in C, \)

\(z_1 g = c_1 e + a_1 \)

\(z_2 g = c_2 (e - (g_0)) + a_2 \)

Completeness: obvious
$z_1 g = c_1 e + a_1$

$z_1^* g = c_1^* e + a_1$

$\Rightarrow (z_1^* - z_1) g = (c_1^* - c_1) e$

$\Rightarrow (z_1^* - z_1)/(c_1^* - c_1) = e$

$\Rightarrow q = (z_1^* - z_1)/(c_1^* - c_1)$

$z_2 g = c_2 (e - \langle g \rangle_0) + a_2$

$z_2^* g = c_2^* (e - \langle g \rangle_0) + a_2$

$\Rightarrow (z_2^* - z_2) g = (c_2^* - c_2) (e - \langle g \rangle_0)$

$\Rightarrow (z_2^* - z_2)/(c_2^* - c_2) = e - \langle g \rangle_0$

$\Rightarrow q = (z_2^* - z_2)/(c_2^* - c_2)$
SECURITY PROOF

Special Soundness:

\[z_1 g = c_1 e + a_1 \]
\[z_1^* g = c_1^* e + a_1 \]

\[\Rightarrow (z_1^* - z_1) g = (c_1^* - c_1) e \]

\[\Rightarrow ((z_1^* - z_1) / (c_1^* - c_1)) g = e \]

\[\Rightarrow \varrho = (z_1^* - z_1) / (c_1^* - c_1) \]

\[z_2 g = c_2 (e - (g_0)) + a_2 \]
\[z_2^* g = c_2^* (e - (g_0)) + a_2 \]

\[\Rightarrow (z_2^* - z_2) g = (c_2^* - c_2) (e - (g_0)) \]

\[\Rightarrow ((z_2^* - z_2) / (c_2^* - c_2)) g = e - (g_0) \]

\[\Rightarrow \varrho = (z_2^* - z_2) / (c_2^* - c_2) \]
SPECIAL SOUNDNESS:

\[
\begin{align*}
 z_1 g &= c_1 \\
 z_1^* g &= c_1^* \\
 \Rightarrow (z_1^* - z_1) g &= (c_1^* - c_1) \\
 \Rightarrow ((z_1^* - z_1)/(c_1^* - c_1)) g &= e \\
 \Rightarrow q &= (z_1^* - z_1)/(c_1^* - c_1)
\end{align*}
\]

\[
K(a; c, c^*; (c_1, z), (c_1^*, z^*)):
\]

1. \(c_2 \leftarrow c - c_1; c_2^* \leftarrow c^* - c_1^* \)
2. If \(c_1^* \neq c_1 \)
 1. return \(q \leftarrow (z_1^* - z_1)/(c_1^* - c_1) \)
3. else // \(c_2^* \neq c_2 \)
 1. return \(q \leftarrow (z_2^* - z_2)/(c_2^* - c_2) \)
SECURITY PROOF

SPECIAL SOUNDNESS:

\[z_1g = c \]
\[z_1^*g = c \]

\[\Rightarrow (z_1^* - z_1)g = 0 \]

\[\Rightarrow ((z_1^* - z_1)/(c_1^* - c_1))g = e \]

\[\Rightarrow q = (z_1^* - z_1)/(c_1^* - c_1) \]

SIMULATION:

Sim (g, e, c):

1. \(c_1 \leftarrow C, c_2 \leftarrow (c - c_1) \text{ mod } |C| \)
2. \(z_1, z_2 \leftarrow \mathbb{Z}_p \)
3. \(a_1 \leftarrow z_1g - c_1g; a_2 \leftarrow z_2g - c_2(e - (g_0)^{c_2}) \)
4. return \((a; c; (c_1, z))\)
Σ-PROTOCOLS FOR BOOLEAN CIRCUITS
Sigma-PROTOCOLS FOR BOOLEAN CIRCUITS

- Each Boolean circuit can be built from NAND gates
Each Boolean circuit can be built from NAND gates

\[x \text{ NAND } y = 1 \text{ iff } x = 0 \text{ or } y = 0 \]
Σ-PROTOCOLS FOR BOOLEAN CIRCUITS

- Each Boolean circuit can be built from NAND gates
 - \(x \text{ NAND } y = 1 \) iff \(x = 0 \) or \(y = 0 \)
- Easy to verify that NAND is observed:
Σ-PROTOCOLS FOR BOOLEAN CIRCUITS

- Each Boolean circuit can be built from NAND gates
 - \(x \text{ NAND } y = 1 \) iff \(x = 0 \) or \(y = 0 \)
- Easy to verify that NAND is observed:
 - \(x \text{ NAND } y = z \) iff \(x + y + 2z - 2 \in \{0, 1\} \)

<table>
<thead>
<tr>
<th>(x, y, z)</th>
<th>(x + y + 2z - 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, 0</td>
<td>-2</td>
</tr>
<tr>
<td>0, 0, 1</td>
<td>0</td>
</tr>
<tr>
<td>0, 1, 0</td>
<td>-1</td>
</tr>
<tr>
<td>0, 1, 1</td>
<td>1</td>
</tr>
<tr>
<td>1, 0, 0</td>
<td>-1</td>
</tr>
<tr>
<td>1, 0, 1</td>
<td>1</td>
</tr>
<tr>
<td>1, 1, 0</td>
<td>0</td>
</tr>
<tr>
<td>1, 1, 1</td>
<td>2</td>
</tr>
</tbody>
</table>
Each Boolean circuit can be built from NAND gates
- \(x \text{ NAND } y = 1 \text{ iff } x = 0 \text{ or } y = 0 \)
- Easy to verify that NAND is observed:
 - \(x \text{ NAND } y = z \text{ iff } x + y + 2z - 2 \in \{0, 1\} \)

Corollary. Boolean proofs are sufficient to construct \(\Sigma \)-protocol for CIRCUIT-SAT
Each Boolean circuit can be built from NAND gates:

- \(x \text{ NAND } y = 1 \) iff \(x = 0 \) or \(y = 0 \)

Easy to verify that NAND is observed:

- \(x \text{ NAND } y = z \) iff \(x + y + 2z - 2 \in \{0, 1\} \)

Corollary. Boolean proofs are sufficient to construct \(\Sigma \)-protocol for CIRCUIT-SAT

Proof. Encrypt each wire value except the last one (which is 1). Prove that each wire value is Boolean. For each gate, prove that NAND is observed.
RECALL: SEMIHONEST MODEL

ω

f
RECALL: SEMIHONEST MODEL

\[\omega \rightarrow x = \text{Encoded}(\omega) \rightarrow f \]
RECALL: SEMIHONEST MODEL

\[x = \text{Encoded}(\omega) \]

\[\text{Encoded}(f(\omega)) \]
RECALL: SEMIHONEST MODEL

\[\omega \]

\[x = \text{Encoded}(\omega) \]

\[\text{Encoded}(f(\omega)) \]

\[f \]

Decode, obtain \(f(\omega) \)
We know how to construct protocols for wide array of tasks, that are secure under the assumption that Alice's input belongs to some public set S_1.
HALF-WAY THERE: Σ-PROTOCOLS
HALF-WAY THERE: Σ-PROTOCOLS

ω

x = Encoded(ω), a of PK(ω ∈ S₁)

f
HALF-WAY THERE: Σ-PROTOCOLS

$x = \text{Encoded}(\omega), a \text{ of } \text{PK}(\omega \in S_1)$

Honesty chosen c
HALF-WAY THERE: Σ-PROTOCOLS

ω

$x = \text{Encoded}(\omega)$, a of $\text{PK}(\omega \in S_1)$

Honestly chosen c

z of $\text{PK}(\omega \in S_1)$

f
HALF-WAY THERE: Σ-PROTOCOLS

ω

$x = \text{Encoded}(\omega)$, a of $\text{PK}(\omega \in S_1)$

Honestly chosen c

z of $\text{PK}(\omega \in S_1)$

f

If (a, c, z) is not an accepting view with input x, abort
HALF-WAY THERE: Σ-PROTOCOLS

\[x = \text{Encoded}(\omega), \ a \text{ of } \text{PK}(\omega \in S_1) \]

\[\text{Honesty chosen } c \]

\[z \text{ of } \text{PK}(\omega \in S_1) \]

\[\text{Encoded}(f(\omega)) \]

If \((a, c, z)\) is not an accepting view with input \(x\), abort
HALF-WAY THERE: Σ-PROTOCOLS

ω:
- $x = \text{Encoded}(\omega)$, a of $\text{PK}(\omega \in S_1)$
- Honestly chosen c
- z of $\text{PK}(\omega \in S_1)$

$\text{Encode}(f(\omega))$

f:
- If (a, c, z) is not an accepting view with input x, abort

Decode, obtain $f(\omega)$
HALF-WAY THERE: Σ-PROTOCOLS

Add a Σ-protocol that convinces Bob that $x \in L$, e.g., $L = \{x: x = \text{Encoded}(\omega) \text{ for some } \omega \in S_1\}$
GOAL: FULL ZK

\[\omega \]

\[x = \text{Encoded}(\omega), \text{ a of } \text{PK}(\omega \in S) \]

Arbitrary \(c \)

\[z \text{ of } \text{PK}(\omega \in S_1) \]

Video

Add some additional steps...

Encoded(\(f(\omega) \))

If \((a, c, z)\) is not an accepting view with input \(x \), abort

Decode, obtain \(f(\omega) \)
BASIC IDEA

- **x, ω** (1st message: commitment a)
- **c** (2nd message: challenge)
- **z** (3rd message: response)

Σ-protocol is only zero knowledge when c is completely random. This is since we start simulating by picking c randomly, and then choose (z, a). It suffices for c to be independent of a: Alice’s best strategy is then to guess c.

Accepts iff prover knows ω such that (x, ω) ∈ R
BASIC IDEA

Σ-protocol is only zero knowledge when c is completely random. This is since we start simulating by picking c randomly, and then choose (z, a). It suffices for c to be independent of a: Alice’s best strategy is then to guess c.

Goal: guarantee c is independent of a
QUIZ: HOW?
Question: how to guarantee a and c are mutually independent?
Question: how to guarantee a and c are mutually independent?

Hint:
Question: how to guarantee a and c are mutually independent?

Hint:

- Internet is asynchronous, so one message (say c) must be sent first, but in a "hidden" form
Question: how to guarantee \(a \) and \(c \) are mutually independent?

Hint:

- Internet is asynchronous, so one message (say \(c \)) must be sent first, but in a "hidden" form.
- Content only revealed after second message (say \(a \)) is sent.
FIRST IDEA: ENCRYPTION

x, ω, pk

x, pk, sk
FIRST IDEA: ENCRYPTION

\[x, \omega, \text{pk} \quad \text{C} \leftarrow \text{Enc}(c; r) \quad x, \text{pk}, \text{sk} \]
FIRST IDEA: ENCRYPTION

\[x, \omega, pk \quad \rightarrow \quad C \leftarrow \text{Enc}(c; r) \quad \leftarrow \quad x, pk, sk \]
FIRST IDEA: ENCRYPTION

\[
x, \omega, pk \quad C \leftarrow \text{Enc}(c; r) \quad x, pk, sk
\]
FIRST IDEA: ENCRYPTION

\[C \leftarrow \text{Enc}(c; r) \]

Abort if \(C \neq \text{Enc}(c; r) \)
FIRST IDEA: ENCRYPTION

\[C \leftarrow \text{Enc}(c; r) \]

Abort if \(C \neq \text{Enc}(c; r) \)
FIRST IDEA: ENCRYPTION

- x, ω, pk
- $C \leftarrow \text{Enc}(c; r)$
- x, pk, sk

Abort if $C \neq \text{Enc}(c; r)$

Accepts iff prover knows ω such that $(x, \omega) \in R$
FIRST IDEA: ENCRYPTION

Seems legit?

- c is independent of a since $x = \text{Enc}(\cdot)$ is sent to Alice first, and x has unique decryption
- Bob cannot "change" c later
- a is independent of c since due to IND-CPA security, C reveals no information about c

$\begin{align*}
 x, \omega, \text{pk} & \quad \text{C} \leftarrow \text{Enc}(c; r) & \quad x, \text{pk}, \text{sk} \\
 a & \quad c, r & \\
 z & \quad \text{Accepts iff prover knows } \omega \text{ such that } (x, \omega) \in R
\end{align*}$

Abort if $C \neq \text{Enc}(c; r)$
FIRST IDEA: ENCRYPTION

x, ω, pk → C ← Enc(c; r) → x, pk, sk

Seems legit?

- c is independent of a since x = Enc (...) is sent to Alice first, and x has unique decryption
- Bob cannot "change" c later
- a is independent of c since due to IND-CPA security, C reveals no information about c

Abort if C ≠ Enc (c; r)

Accepts iff prover knows ω such that (x, ω) ∈ R

Those two properties are sufficient: no need to decrypt. Only ability to "open" encryption so one can verify what was inside.
FIRST IDEA: ENCRYPTION

x, ω, pk \quad $C \leftarrow \text{Enc}(c; r)$ \quad x, pk, sk

- c is independent of a since $x = \text{Enc}(\ldots)$ is sent to Alice first, and x has unique decryption
- Bob cannot "change" c later
- a is independent of c since due to IND-CPA security, C reveals no information about c

Seems legit?

Accepts iff prover knows ω such that $(x, \omega) \in R$

Those two properties are sufficient: no need to decrypt. Only ability to "open" encryption so one can verify what was inside

Something weaker than encryption suffices
COMMITMENT SCHEME
A commitment scheme consists of three algorithms:
A commitment scheme consists of three algorithms:

- key generation $\text{Gen}(\ldots) \rightarrow \text{pk}$
A commitment scheme consists of three algorithms:

- key generation $\text{Gen}(\ldots) \rightarrow \text{pk}$
- commitment $\text{Com}_{\text{pk}}(c; r) \rightarrow C$
A commitment scheme consists of three algorithms:

- key generation $\text{Gen}(\ldots) \rightarrow \text{pk}$
- commitment $\text{Com}_{\text{pk}}(c; r) \rightarrow C$
- verification algorithm $\text{Ver}_{\text{pk}}(C; c, r) \in \{0, 1\}$
COMMITMENT SCHEME

pk ← Gen
COMMITMENT SCHEME

public key pk

$pk \leftarrow \text{Gen}$
COMMITMENT SCHEME

public key \mathbf{pk}

c, r

$\mathbf{pk} \leftarrow \text{Gen}$
COMMITMENT SCHEME

public key pk

$C \leftarrow \text{Com}_{pk} (c; r)$
COMMITMENT SCHEME

public key pk

\[C \leftarrow \text{Com}_{pk} (c; r) \]

Store C
COMMITMENT SCHEME

public key pk

$C \leftarrow \text{Com}_{pk} (c; r)$

Store C

(c, r)

c, r
COMMITMENT SCHEME

public key pk

$pk \leftarrow \text{Gen}$

c, r

(c, r)

$C \leftarrow \text{Com}_{pk} (c; r)$

Store C

Output $\text{Ver}_{pk}(C; c, r)$
public key pk

$C \leftarrow \text{Com}_{pk} (c; r)$

Note: in some commitments schemes, Bob has to reveal some extra information on top of c and r (out of scope)
SECURITY GOALS OF COMMITMENT

- **Computational hiding (IND-CPA):**
 - given c_0, c_1 (chosen by adversary), pk, and $C = \text{Com}_{pk} (c_b; r)$, it is difficult to guess b

- **Perfect binding:**
 - for every C, there exists at most one c such that $C = \text{Com}_{pk} (c; r)$ for some r
IND-CPA PKC = P.B. COMMITMENT

Theorem. Every IND-CPA secure cryptosystem is a perfectly binding and computationally hiding commitment scheme.

Proof. Obvious:

- perfect binding follows from unique decryption
- computational hiding follows from IND-CPA security
REFINED: P.B. COMMITMENT

\(x, \omega, pk \)

\(x, pk \)
REFINED: P.B. COMMITMENT

\[x, \omega, \text{pk} \quad \rightarrow \quad C \leftarrow \text{Com}(c; r) \quad \rightarrow \quad x, \text{pk} \]
REFINED: P.B. COMMITMENT

\[x, \omega, pk \quad \xrightarrow{\text{Com}(c; r)} \quad x, pk \]
REFINED: P.B. COMMITMENT

\[x, \omega, pk \quad \xrightarrow{C \leftarrow \text{Com}(c; r)} \quad x, pk \]
REFINED: P.B. COMMITMENT

\[x, \omega, pk \quad \xrightarrow{C \leftarrow \text{Com}(c; r)} \quad x, pk \]

Abort if \(\text{Ver}(C; c, r) = 0 \)
REFINED: P.B. COMMITMENT

\[x, \omega, pk \quad \xrightarrow{\quad} \quad C \leftarrow \text{Com}(c; r) \quad \xrightarrow{\quad} \quad x, pk \quad \]

Abort if \(\text{Ver}(C; c, r) = 0 \)
REFINED: P.B. COMMITMENT

$(x, \omega, pk) \rightarrow C \leftarrow \text{Com}(c; r) \rightarrow (x, pk)$

Abort if $\text{Ver}(C; c, r) = 0$

Accepts iff prover knows ω such that $(x, \omega) \in R$
REFINED: P.B. COMMITMENT

c is independent of a since $C = \text{Com}(c; r)$ is sent to Alice first, and Com is perfectly binding

Bob cannot open C to something different

a is independent of c since due to IND-CPA security, C reveals no information about c

Accepts iff prover knows ω such that $(x, \omega) \in R$
REFINED: P.B. COMMITMENT

Seems legit?
- c is independent of a since $C = \text{Com}(c; r)$ is sent to Alice first, and Com is perfectly binding
- Bob cannot open C to something different
- a is independent of c since due to IND-CPA security, C reveals no information about c

Abort if $\text{Ver}(C; c, r) = 0$

Accepts iff prover knows ω such that $(x, \omega) \in R$

Can you find a problem?
SPECIAL SOUNDNESS

x, ω, pk

x, pk
SPECIAL SOUNDNESS

\[x, \omega, pk \]

\[C \leftarrow \text{Com}(c; r) \]

\[x, pk \]
SPECIAL SOUNDNESS

\[x, \omega, pk \quad \rightarrow \quad C \leftarrow \text{Com}(c; r) \quad \rightarrow \quad x, pk \]
SPECIAL SOUNDNESS

\[x, \omega, pk \quad \quad \quad \quad C \leftarrow \text{Com}(c; r) \quad \quad \quad \quad x, pk \]
SPECIAL SOUNDNESS

\[x, \omega, pk \quad C \leftarrow \text{Com}(c; r) \quad x, pk \]

Abort if Ver\((C; c, r) = 0\)
SPECIAL SOUNDNESS

\[
x, \omega, \text{pk} \quad \rightarrow \quad C \leftarrow \text{Com}(c; r) \quad \rightarrow \quad \omega, \text{pk} \\
\begin{align*}
&\rightarrow \quad a \\
&\rightarrow \quad c, r \\
&\rightarrow \quad z \\
\end{align*}

\text{Abort if Ver}(C; c, r) = 0
$x, \omega, pk \quad C \leftarrow \text{Com}(c; r) \quad x, pk$

Abort if $\text{Ver}(C; c, r) = 0$

$c^* \neq c, r^*$
SPECIAL SOUNDNESS

\[x, \omega, pk \]

\[C \leftarrow \text{Com}(c; r) \]

\[x, pk \]

Abort if \(\text{Ver}(C; c, r) = 0 \)

Abort if \(\text{Ver}(C; c^*, r^*) = 0 \)
SPECIAL SOUNDNESS

\[x, \omega, pk \quad C \leftarrow \text{Com}(c; r) \quad x, pk \]

Abort if \(\text{Ver}(C; c, r) = 0 \)

Abort if \(\text{Ver}(C; c^*, r^*) = 0 \)
SPECIAL SOUNDNESS

\[x, \omega, pk \quad C \leftarrow \text{Com}(c; r) \quad x, pk \]

Abort if \(\text{Ver}(C; c, r) = 0 \)

Abort if \(\text{Ver}(C; c^*, r^*) = 0 \)

Accepts iff both \((a, c, z)\) and \((a, c^*, z^*)\) are accepting views
SPECIAL SOUNDNESS

\[x, \omega, pk \quad \text{C} \leftarrow \text{Com}(c; r) \quad x, pk \]

Abort if \(\text{Ver}(C; c, r) = 0 \)

Abort if \(\text{Ver}(C; c^*, r^*) = 0 \)

Accepts iff both \((a, c, z)\) and \((a, c^*, z^*)\) are accepting views

Can you find (a) problem?
SPECIAL SOUNDNESS

\[x, \omega, pk \]

\[C \leftarrow \text{Com}(c; r) \]

Problem. The commitment scheme is perfectly binding: it cannot be the case that \(\text{Ver}(C; c, r) \) and \(\text{Ver}(C; c^*, r^*) \) both accept if \(c \neq c^* \).

Accepts iff both \((a, c, z)\) and \((a, c^*, z^*)\) are accepting views.
SOLUTION?
SOLUTION?

- **Question:** what do do?
Question: what do do?

Hint 1: commitment scheme should not be perfectly binding
Question: what do do?

Hint i: commitment scheme should not be perfectly binding

For every $c \neq c^*$, r there should exist r^*, such that
SOLUTION?

- **Question**: what do do?
- **Hint 1**: commitment scheme should not be perfectly binding
 - For every $c \neq c^*$, r there should exist r^*, such that $\text{Com} (c; r) = \text{Com} (c^*; r^*)$
Question: what do do?

Hint 1: commitment scheme should not be perfectly binding

For every $c \neq c^*$, r there should exist r^*, such that

$$\text{Com} (c; r) = \text{Com} (c^*; r^*)$$

Hint 2: finding such collusions should be easy for extractor, but difficult for a (malicious/honest) verifier
SOLUTION?

✧ **Question**: what do do?

✧ **Hint 1**: commitment scheme should not be perfectly binding

✧ For every $c \neq c^*$, r there should exist r^*, such that

\[\text{Com} (c; r) = \text{Com} (c^*; r^*) \]

✧ **Hint 2**: finding such collusions should be easy for extractor, but difficult for a (malicious/honest) verifier

We need (trapdoor) computational binding, where binding can be broken by a party who knows some "trapdoor"
TRAPDOOR COMMITMENT
TRAPDOOR COMMITMENT

- **Perfect hiding:**
TRAPDOOR COMMITMENT

- **Perfect hiding:**
 - Distribution of $\text{Com}_{pk}(m; r)$ does not depend on m
TRAPDOOR COMMITMENT

- **Perfect hiding:**
 - Distribution of $\text{Com}_{pk}(m; r)$ does not depend on m

- **Computational binding:**
TRAPDOOR COMMITMENT

- **Perfect hiding:**
 - Distribution of $\text{Com}_{pk}(m; r)$ does not depend on m

- **Computational binding:**
 - for every $m, r, m^* \neq m$, without knowing trapdoor
 sk, it is computationally hard to find r^*, such that
 $\text{Com}_{pk}(m; r) = \text{Com}_{pk}(m^*; r^*)$
TRAPDOOR COMMITMENT

- **Perfect hiding:**
 - Distribution of $\text{Com}_{\text{pk}} (m; r)$ does not depend on m

- **Computational binding:**
 - for every $m, r, m^* \neq m$, without knowing trapdoor sk, it is computationally hard to find r^*, such that $\text{Com}_{\text{pk}} (m; r) = \text{Com}_{\text{pk}} (m^*; r^*)$

- **Trapdoor:**
TRAPDOOR COMMITMENT

- **Perfect hiding:**
 - Distribution of $\text{Com}_{\text{pk}} (m; r)$ does not depend on m

- **Computational binding:**
 - for every $m, r, m^* \neq m$, without knowing trapdoor sk, it is computationally hard to find r^*, such that $\text{Com}_{\text{pk}} (m; r) = \text{Com}_{\text{pk}} (m^*; r^*)$

- **Trapdoor:**
 - given $sk, m, r, m^* \neq m$, it is computationally easy to find r^* such that $\text{Com}_{\text{pk}} (m; r) = \text{Com}_{\text{pk}} (m^*; r^*)$
CHOICE OF COMMITMENT SCHEME
We use a commitment scheme that is constructed from any Σ-protocol for any hard language.
CHOICE OF COMMITMENT SCHEME

- We use a commitment scheme that is constructed from any Σ-protocol for any hard language.
- We use the fact that in the final protocol we only need to commit to random messages.
We use a commitment scheme that is constructed from any Σ-protocol for any hard language.

We use the fact that in the final protocol we only need to commit to random messages.

The committed message = c of original protocol.
CHOICE OF COMMITMENT SCHEME

- We use a commitment scheme that is constructed from any Σ-protocol for any hard language.
- We use the fact that in the final protocol we only need to commit to random messages.
- The committed message $= \mathbf{c}$ of original protocol.
- We use this commitment scheme since it fits well our goals.
Let $R = \{(x, w)\}$ be a relation, such that one can efficiently verify whether $(x, w) \in R$
Let $R = \{(x, w)\}$ be a relation, such that one can efficiently verify whether $(x, w) \in R$

Let $R(x) := \{w : (x, w) \in R\}$
Let $R = \{(x, w)\}$ be a relation, such that one can efficiently verify whether $(x, w) \in R$
Let $R(x) := \{w : (x, w) \in R\}$
Let $L := \{x : (\exists \text{short } w) R(x, w)\}$
HARD RELATION

Let $R = \{(x, w)\}$ be a relation, such that one can efficiently verify whether $(x, w) \in R$

Let $R(x) := \{w : (x, w) \in R\}$

Let $L := \{x : (\exists \text{short } w) \ R(x, w)\}$

Relation $R = \{(x, w)\}$ is **hard**, if given random $x \in L$, it is difficult to find a value $w \in R(x)$
Let $R = \{(x, w)\}$ be a relation, such that one can efficiently verify whether $(x, w) \in R$

Let $R(x) := \{w : (x, w) \in R\}$

Let $L := \{x : (\exists \text{short } w) R(x, w)\}$

Relation $R = \{(x, w)\}$ is hard, if given random $x \in L$, it is difficult to find a value $w \in R(x)$

Given (x, w), it is efficient to verify if $(x, w) \in R$
Let \(R = \{(x, w)\} \) be a relation, such that one can efficiently verify whether \((x, w) \in R\)

Let \(R(x) := \{w : (x, w) \in R\} \)

Let \(L := \{x : (\exists \text{short } w) \ R(x, w)\} \)

Relation \(R = \{(x, w)\} \) is **hard**, if given random \(x \in L \), it is difficult to find a value \(w \in R(x) \)

Given \((x, w)\), it is efficient to verify if \((x, w) \in R\)

Example: \(R = \{(pk, sk)\} \)
COMMUNICATION FROM Σ-PROTOCOLS

Pick any hard relation \(R', (X, \Omega) \in R' \)
COMMITMENT FROM Σ-PROTOCOLS

public key X

Pick any hard relation $R', (X, \Omega) \in R'$
COMMITMENT FROM Σ-PROTOCOLS

public key X

Pick any hard relation $R', (X, \Omega) \in R'$

Use simulator of $PK(\Omega)$ to create accepting view (A, c, Z)
COMMITMENT FROM Σ-PROTOCOLS

public key X

Com $(c; Z) := A$

Pick any hard relation $R', (X, \Omega) \in R'$

Use simulator of $\text{PK}(\Omega)$ to create accepting view (A, c, Z)
COMMITMENT FROM Σ-PROTOCOLS

public key X

$\text{Com } (c; Z) := A$

Pick any hard relation $R', (X, \Omega) \in R'$

Use simulator of $\text{PK}(\Omega)$ to create accepting view (A, c, Z)

Store commitment A
COMMITMENT FROM Σ-PROTOCOLS

public key X

$\text{Com } (c; Z) := A$

Use simulator of $\text{PK}(\Omega)$ to create accepting view (A, c, Z)

Pick any hard relation $R', (X, \Omega) \in R'$

Store commitment A
COMMITMENT FROM Σ-PROTOCOLS

public key X

$\text{Com} \ (c; Z) := A$

Use simulator of $\text{PK}(\Omega)$ to create accepting view (A, c, Z)

Pick any hard relation $R', (X, \Omega) \in R'$

Store commitment A

$\text{Ver}(A; c, Z) = 1$ iff it is an accepting view of $\text{PK}(\Omega)$
EXAMPLE: DL BASED

Pick random $X \leftarrow g^\Omega$
EXAMPLE: DL BASED

Pick random $X \leftarrow g^\Omega$

public key X
EXAMPLE: DL BASED

public key X

Pick random $X \leftarrow g^\Omega$

$Z \leftarrow \mathbb{Z}_p$

$A \leftarrow X^{-c} g^Z$
EXAMPLE: DL BASED

public key X

Pick random $X \leftarrow g^\Omega$

$Z \leftarrow \$ \mathbb{Z}_p$

$A \leftarrow X^{-c} g^Z$

$\text{Com}_X (c; Z) := A$
EXAMPLE: DL BASED

Pick random $X \leftarrow g^\Omega$

Store commitment A

public key X

$Z \leftarrow \mathbb{Z}_p$

$A \leftarrow X^{-c} g^Z$

$\text{Com}_X (c; Z) := A$
EXAMPLE: DL BASED

\[\text{Com}_X (c; Z) := A \]

\[
\begin{align*}
Z & \leftarrow \$ \mathbb{Z}_p \\
A & \leftarrow X^{-c} g^Z
\end{align*}
\]

Pick random \(X \leftarrow g^\Omega \)

Store commitment \(A \)

(c, Z)
EXAMPLE: DL BASED

\[\text{Com}_X (c; Z) := A \]

\[Z \leftarrow \$ \mathbb{Z}_p \]
\[A \leftarrow X^{-c} g^Z \]

\[\text{Ver}_X (A; c, Z) = 1 \text{ iff } A = X^c g^Z \]

Pick random \(X \leftarrow g^Q \)
Store commitment \(A \)

Public key \(X \)
EXAMPLE: DL BASED

EXAMPLE: DL BASED

\[\text{Com}_X (c; Z) := A \]

\[Z \leftarrow \mathbb{Z}_p \]
\[A \leftarrow X^{-c} g^Z \]

Store commitment \(A \)

\[\text{Ver}_X (A; c, Z) = 1 \text{ iff } A = X^{-c} g^Z \]

Pick random \(X \leftarrow g^\Omega \)

Note: a small variation of this commitment scheme is known as the Pedersen commitment.
Theorem. The commitment scheme of the last slide is computationally binding (if R' is hard), perfectly hiding, and trapdoor.
Theorem. The commitment scheme of the last slide is computationally binding (if R' is hard), perfectly hiding, and trapdoor

- *specially sound* \Rightarrow **computational binding:** assume binding adversary outputs commitment collusion $(A, c, Z), (A, c^*, Z^*), c \neq c^*$, s.t. Ver accepts both. Thus both are accepting views of Σ-protocol. We can use extractor to recover Ω, thus R' is **not** hard.
Theorem. The commitment scheme of the last slide is computationally binding (if \(R'\) is hard), perfectly hiding, and trapdoor

- **specially sound** => **computational binding:** assume binding adversary outputs commitment collusion \((A, c, Z), (A, c^*, Z^*)\), \(c \neq c^*\), s.t. Ver accepts both. Thus both are accepting views of \(\Sigma\)-protocol. We can use extractor to recover \(\Omega\), thus \(R'\) is **not** hard

- **SHVZK** => **perfect hiding:** follows since in real protocol, \(A\) is randomly chosen before \(c\) is chosen, and real protocol and simulator are indistinguishable
SECURITY OF THIS COMMITMENT

Theorem. The commitment scheme of the last slide is computationally binding (if R' is hard), perfectly hiding, and trapdoor

- **specially sound** => **computational binding:** assume binding adversary outputs commitment collusion (A, c, Z), (A, c^*, Z^*), $c \neq c^*$, s.t. Ver accepts both. Thus both are accepting views of Σ-protocol. We can use extractor to recover Ω, thus R' is **not** hard

- **SHVZK** => **perfect hiding:** follows since in real protocol, A is randomly chosen before c is chosen, and real protocol and simulator are indistinguishable

- **Completeness** => **trapdoor:** given Ω, one can start Σ-protocol with any A, and then find Z corresponding to any c such that (A, c, Z) is an accepting view
STUDY OUTCOMES
STUDY OUTCOMES

- \(\Sigma \)-protocol for Booleanity, Circuit-SAT
STUDY OUTCOMES

- Σ-protocol for Booleanity, Circuit-SAT
- Getting full ZK from Σ-protocols
NEXT LECTURE
NEXT LECTURE

✧ ZK from Sigma:
NEXT LECTURE

✧ ZK from Sigma:
 ✧ full construction
NEXT LECTURE

- **ZK from Sigma:**
 - full construction
- **Idea of NIZK**
NEXT LECTURE

- ZK from Sigma:
 - full construction
- Idea of NIZK
- Pairings:
ZK from Sigma:
- full construction

Idea of NIZK

Pairings:
- algebraically "one step up" from exponentiation
Next Lecture

- **ZK from Sigma:**
 - full construction

- **Idea of NIZK**

- **Pairings:**
 - algebraically "one step up" from exponentiation
 - instead of linear functions, allow to compute quadratic functions on ciphertexts, non-interactively
NEXT LECTURE

✦ **ZK from Sigma:**
 ✦ full construction

✦ **Idea of NIZK**

✦ **Pairings:**
 ✦ algebraically "one step up" from exponentiation
 ✦ instead of linear functions, allow to compute quadratic functions on ciphertexts, non-interactively
 ✦ Many, many applications - incl. **efficient** NIZK