Answer the following questions (choose 6 from 7)

1. (2 points) Given a Hamming distance protocol between Alice and Bob, what notions of security are important in the semi-honest model?

2. (4 points) In the setup for ElGamal, we used a prime p of size (at least) 3248 bits and a prime q of size (at least) 256 bits, and all operations were done in \mathbb{Z}_p.

 (a) What is the relationship between p and q?
 (b) Why not just use \mathbb{Z}_q^*, without relying on p?

3. (4 points) Explain the relations between the DL, CDH, DDH assumptions. What can be the motivations for introducing each one?

4. (5 points) Let Alice and Bob have private boolean inputs $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3)$ respectively, corresponding to their choices in a voting of three issues. They want to determine whether or not any of their choices are the same for at least one of these issues (and output 1 in this case).

 - Create a boolean function that computes the desired result and works for arbitrary \vec{a}, \vec{b}.
 - Create a BDD for this function that works for arbitrary \vec{a}, \vec{b}.

5. (6 points) In a simple instantiation of Damgård-Jurik, we have $N = 15$.

 (a) Give an example of a valid public key and secret key.
 (b) What value of s should we use to encrypt $m = 2016$? How big will the ciphertext be?

6. (5 points) Let f be a function such that $f(s, (n + 1)^x \mod n^{s+1}) = x \mod n^s$.

 (a) What is $f(1, (n + 1)^x)$?
 (b) Let $\alpha \in \mathbb{Z}_n^*$, $r \in \mathbb{Z}_n^*$ be such that $r^{\alpha n^s} \equiv 1 \pmod{n^{s+1}}$. Let $g(x) = (n + 1)^x r^{n^s} \mod n^{s+1}$. Determine $g^{-1}(c)$ such that $g^{-1}(g(x)) \equiv x \pmod{n^s}$.
7. (4 points)

(a) What is the difference between multi-party and multi-round protocols? Compare both to 2-party, 2-round protocols in number of rounds, communication, computation, and trust requirements.

(b) In a \((n, t)\)-secret sharing scheme, what is the significance of the value \(t\)?