CRYPTOGRAPHIC PROTOCOLS
2016, LECTURE 10

Garbled Circuits

HELGER LIPMAA, UNIVERSITY OF TARTU
UP TO NOW

- We saw secure computation protocols
- with tradeoffs

<table>
<thead>
<tr>
<th></th>
<th>Rounds</th>
<th>Communication</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDD-based</td>
<td>🟢🟢🟢</td>
<td>🟢🟢🟢</td>
<td>🔴🔴🔴</td>
</tr>
<tr>
<td>MPC</td>
<td>🔴🔴🔴</td>
<td>🔴🔴🔴</td>
<td>🟢🟢🟢</td>
</tr>
</tbody>
</table>
THIS LECTURE

- We saw secure computation protocols
- with tradeoffs
- This time: another tradeoff

<table>
<thead>
<tr>
<th></th>
<th>Rounds</th>
<th>Communication</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDD-based</td>
<td>![Green Thumbs Up]</td>
<td>![Green Thumbs Up]</td>
<td>![Red Thumbs Down]</td>
</tr>
<tr>
<td>Multi-round</td>
<td>![Red Thumbs Down]</td>
<td>![Red Thumbs Down]</td>
<td>![Green Thumbs Up]</td>
</tr>
<tr>
<td>Garbled circuits</td>
<td>![Green Thumbs Up]</td>
<td>![Red Thumbs Down]</td>
<td>![Green Thumbs Up]</td>
</tr>
</tbody>
</table>
RECALL: BOOLEAN CIRCUITS

- A computation model
- Every node evaluates a Boolean function on its inputs
- Output of circuit: top value
- Complexity class of all Boolean functions that can be evaluated by poly-size circuits = class of efficient Boolean functions (P/poly)
Gate implements a function $f: \{0, 1\}^2 \rightarrow \{0, 1\}$

Circuit implements a function $C: \{0, 1\}^n \rightarrow \{0, 1\}$
BOOLEAN CIRCUITS

- Fix values of input gates
- Each wire \(w \) obtains recursively a value \(\forall [w] \in \{0, 1\} \)
- Circuit outputs the value of the output wire \(\forall [\text{output}] \)
Fix values of input gates

Each wire \(w \) obtains recursively a value \(\forall [w] \in \{0, 1\} \)

Circuit outputs the value of the output wire \(\forall [\text{output}] \)
◆ Fix values of input gates

◆ Each wire w obtains recursively a value $V[w] \in \{0, 1\}$

◆ Circuit outputs the value of the output wire $V[output]$
 BOOLEAN CIRCUITS

- Fix values of input gates
- Each wire \(w \) obtains recursively a value \(V[w] \in \{0, 1\} \)
- Circuit outputs the value of the output wire \(V[\text{output}] \)
Let $w_i(m)$ be the value of w_i, given input assignment m

Thus for $m = 010$,

$C(m) = 1$
 BOOLEAN CIRCUITS

- 16 Boolean functions, so 16 possible gate types

- Possible basis: \{\land, \oplus\}

- \neg x = 1 \oplus x

- \begin{align*}
x \lor y &= \neg(\neg x \land \neg y) = \\
&= 1 \oplus((1 \oplus x) \land (1 \oplus y)) = x \oplus y \oplus (x \land y)
\end{align*}
GARBLED CIRCUITS: GOAL

- Alice knows input a
- Bob knows input b
- Bob will get to know $C(a, b)$
- ... without learning anything about Alice's input and the intermediate wire values
"Garble" all wire values

- for wire \(w \), 0 \(\rightarrow \) \(K_{w0} \), 1 \(\rightarrow \) \(K_{w1} \)

- except for output wire where \(K_{wj} = j \)

Main idea: Allow Bob to obtain only one \(K_{wj} \) of two garbled values corresponding to each wire
For each Alice's input w_i:
- Alice sends to Bob $K_{w_i a_i}$

For each Bob's input w_i:
- Alice generates and helps Bob to privately obtain $K_{w_i b_i}$

For each internal wire w:
- Alice helps Bob to obtain $K_{w_i b_i}$

$K_{10}, K_{11}, K_{20}, K_{21}, K_{30}, K_{31}, K_{40}, K_{41}, K_{50}, K_{51}, K_{60}, K_{61}$
MORE DETAILS

- For each Alice's input w_i:
 - Alice sends to Bob $K_{w_i}a_i$

- For each Bob's input w_i:
 - Alice generates and helps Bob to privately obtain $K_{w_i}b_i$

- For each internal wire w:
 - Alice helps Bob to obtain $K_{w_ib_i}$
MORE DETAILS

- For each Alice's input w_i:
 - Alice sends to Bob $Kw_i a_i$

- For each Bob's input w_i:
 - Alice generates and helps Bob to privately obtain $Kw_i b_i$

- For each internal wire w:
 - Alice helps Bob to obtain $K_{w_ib_i}$

Protocol 1

Protocol 2
QUIZ: PROTOCOL 1

❖ Let w be one of Bob's input wires
❖ Alice has K_0, K_1
❖ Bob has j
❖ Quiz: how to transfer K_j to Bob?

Answer: oblivious transfer. CPIR with extra privacy: Bob obtains only one database element and nothing else.
(2, 1)-OT PROTOCOL

This is oblivious transfer in semihonest model. Honest Bob only obtains $M = f_x$
REMARKS: OT

- **Computation**: small number of PK ops
 - As we saw, Paillier is quite expensive, though

- **Communication**: 2 ciphertexts

- **Note**: $|key|$ is short, say 128 bits

- Can use any OT protocol that works with such data
Let w be one of intermediate wires

Alice has keys $K_{u0}, K_{u1}, K_{v0}, K_{v1}, K_{w0}, K_{w1}$

Bob has K_{ui}, K_{vj}

Quiz: how to transfer $K_{wk}, k = i \land j$, to Bob?

Answer: garbled gate. Alice sends to Bob $\{\text{Enc}(K_{ui}, \text{Enc}(K_{vj}, K_{wk}))\}$
GARBLED AND-GATE

\[G_{00} \leftarrow \text{AES}(K_{u0}, \text{AES}(K_{v0}, o^{20} \parallel K_{w0})) \]
\[G_{01} \leftarrow \text{AES}(K_{u0}, \text{AES}(K_{v1}, o^{20} \parallel K_{w0})) \]
\[G_{10} \leftarrow \text{AES}(K_{u1}, \text{AES}(K_{v0}, o^{20} \parallel K_{w0})) \]
\[G_{11} \leftarrow \text{AES}(K_{u1}, \text{AES}(K_{v1}, o^{20} \parallel K_{w1})) \]
\[G[w] \leftarrow \text{random perm. of } G_{ij} \]

Note 1: this protocol is non-interactive. Alice can transfer all \(G[w] \) to Bob before Bob knows \(K_{ui}, K_{vj} \).

Note 2: Other gate types can be garbled similarly.
REMARKS: GARbled GATE

- **Computation:**
 - **Alice:** 8 AES encryptions
 - **Bob:** 4 AES decryptions in average
 - AES is much \(1000\times\) faster than PK encryption!

- **Communication:** < 500 bits

- Can replace AES with arbitrary faster but secure block cipher
FULL GARBLED CIRCUIT PROTOCOL

Generate new pk for OT
For all Bob's input wires i:
1. Prepare OT query $Q(b_i)$
 $c \leftarrow (pk, (Q(b_i))$ for all i)

For all wires w of the circuit:
1. Generate random K_{w_0}, K_{w_1}
2. Construct $G[w]$ if w is internal
 $d \leftarrow (G[w])$ for all internal wires w
 $e \leftarrow (K_{ia_i})$ for all Alice's input wires i
For all Bob's input wires i:
1. Let $R_i \leftarrow \text{Reply}(Q(b_i), (K_{i0}, K_{i1}))$
 $f \leftarrow (R_i)$ for all Bob's input wires i

For all Bob's input wires i:
1. $K_{ib_i} \leftarrow \text{Answer}(R_i)$
For all internal wires w of the circuit:
1. $K_{wk} \leftarrow \text{GarbledGate}(K_{ui}, K_{vj}, G[w])$
Return the key of last gate
SECURITY

- **Bob's privacy:**
 - Alice sees only OT queries, so guaranteed by OT security

- **Alice's privacy:**
 - Bob sees AES encryptions and OT replies
 - Security guaranteed by AES security, OT security, and correctness of Alice's operation

- Will omit formal proof of security
EFFICIENCY

 היתר

Round-complexity:

* 2 msg (one msg by Bob, one by Alice) --- optimal # of rounds

Computation:

* |Bob inputs| OT-s, 8*|circuit size| AES-s
* Very good, since AES is fast
 * except when circuit size is really large

Communication:

* < 500 bits per gate, thus large
* Communication is linear in |circuit|, not in |size| :(
GARBLED CIRCUITS

- **Rounds:** 2

- **Computation:** $|\text{Bob's input}| \text{ OT, } 8^*|\text{circuit size}| \text{ AES}

- **Communication:** $\Theta (|\text{circuit size}|)$

<table>
<thead>
<tr>
<th></th>
<th>Rounds</th>
<th>Communication</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDD-based</td>
<td>![Thumbs Up]</td>
<td>![Thumbs Up]</td>
<td>![Thumbs Down]</td>
</tr>
<tr>
<td>MPC</td>
<td>![Thumbs Down]</td>
<td>![Thumbs Down]</td>
<td>![Thumbs Up]</td>
</tr>
<tr>
<td>Garbled circuits</td>
<td>![Thumbs Up]</td>
<td>![Thumbs Down]</td>
<td>![Thumbs Up]</td>
</tr>
</tbody>
</table>
EXAMPLE: EQ

- **Alice's input:** $a \in \{0, 1\}^n$
- **Bob's input:** $b \in \{0, 1\}^n$
- **Bob's output:** $[b = a]$
- **Circuit size:** $2n - 1$
- **Cost:** n OT, $8(2n - 1)$ AES
- **Comp. dominated by OT-s**
HOW TO OPTIMIZE?

- **Communication**: linear in \(|\text{circuit size}|\)

- **Task 1**: minimize circuit size

- **Computation** is dominated, depending on circuit size, by OT-s or GarbledGate-s

- **Task 2**: minimize complexity of OT-s

- **Task 3**: minimize complexity of GarbledCircuit's

Non-cryptographic task. Will not elaborate

Cryptographic task. Will elaborate
OT COMPLEXITY MINIMIZATION

- Use more efficient (2, 1)-OT
 - Paillier \rightarrow Elgamal, but can't go much faster

- **OT extension:**
 - we need many OT-s
 - need to reduce the number expensive operations
If input length n is large:

- need to implement $n \gg \kappa$ OT-s

Question:

- Can we implement n OT-s by using n "cheap operations" and $\ll n$ OT-s?

Recall: κ is the security parameter
RECALL: N OTL PROTOCOLS

For $i = 1$ to n:
\[c_i \leftarrow Q(x_i) \]

For $i = 1$ to n:
\[c_i \leftarrow Q(x_i) \]

\[(c_1, \ldots, c_n) \]

\[(f_{i0}, f_{i1}) \in \{0, 1\}^L \]

\[(R_1, \ldots, R_n) \]

\[x_i \in \{0, 1\} \]

For $i = 1$ to n:
\[R_i \leftarrow \text{Reply}(c_i, (f_{i0}, f_{i1})) \]

For $i = 1$ to n:
\[R_i \leftarrow \text{Reply}(c_i, (f_{i0}, f_{i1})) \]

\[M_i \leftarrow \text{Answer}(R_i) \]

For $i = 1$ to n:
\[M_i \leftarrow \text{Answer}(R_i) \]
IDEA: OT EXTENSION

- Alice obtains from Bob, by using $\kappa \ll n$ OT protocols, a number of random bits.
- Alice masks her input by so obtained random bits and her own random input s, and sends the masked values to Bob.
- Bob can "unmask" only $\frac{1}{2}$ of the transferred values since the rest depends on s.
For $i = 1$ to n:
For $j = 1$ to κ: $t_{ij} \leftarrow \{0, 1\}$
For $i = 1$ to κ:
Write $t^i = (t_{i1}, ..., t_{i\kappa})$

Compute $t^i \oplus x$

For $i \in \{1, ..., n\}$:
$(f_{i0}, f_{i1}) \in \{0, 1\}^\kappa$

$$\begin{array}{|c|c|c|}
\hline
\text{t}^1 \oplus x & \text{t}^2 \oplus x & \text{t}^3 \oplus x \\
\hline
\text{t}_{11} & \text{t}_{12} & \text{t}_{13} \\
\text{t}_{21} & \text{t}_{22} & \text{t}_{23} \\
\text{t}_{31} & \text{t}_{32} & \text{t}_{33} \\
\text{t}_{41} & \text{t}_{42} & \text{t}_{43} \\
\text{t}_{51} & \text{t}_{52} & \text{t}_{53} \\
\text{t}_{61} & \text{t}_{62} & \text{t}_{63} \\
\hline
\end{array}$$
N OT^L VIA OT EXTENSION

For \(i = 1 \) to \(n \):
For \(j = 1 \) to \(\kappa \): \(t_{ij} \leftarrow \{0, 1\} \)
For \(i = 1 \) to \(\kappa \):
Write \(t^i = (t_{ii}, ..., t_{ni}) \)
Compute \(t^i \oplus x \)

Alice obtains \(\{A^i = t^i \oplus s_i x\} \) by using \(\kappa \) OT^{n-s}

<table>
<thead>
<tr>
<th>OT(s_1)</th>
<th>OT(s_2)</th>
<th>OT(s_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t^1 \oplus o_x)</td>
<td>(t^1 \oplus i_x)</td>
<td>(t^1 \oplus o_x)</td>
</tr>
<tr>
<td>(t_{11})</td>
<td>(t_{11} \oplus x_1)</td>
<td>(t_{12})</td>
</tr>
<tr>
<td>(t_{21})</td>
<td>(t_{21} \oplus x_2)</td>
<td>(t_{22})</td>
</tr>
<tr>
<td>(t_{31})</td>
<td>(t_{31} \oplus x_3)</td>
<td>(t_{32})</td>
</tr>
<tr>
<td>(t_{41})</td>
<td>(t_{41} \oplus x_4)</td>
<td>(t_{42})</td>
</tr>
<tr>
<td>(t_{51})</td>
<td>(t_{51} \oplus x_5)</td>
<td>(t_{52})</td>
</tr>
<tr>
<td>(t_{61})</td>
<td>(t_{61} \oplus x_6)</td>
<td>(t_{62})</td>
</tr>
</tbody>
</table>
For \(i = 1 \) to \(n \):
For \(j = 1 \) to \(\kappa \): \(t_{ij} \leftarrow \{0, 1\} \)
For \(i = 1 \) to \(\kappa \):
Write \(t^i = (t_{i1}, \ldots, t_{ni}) \)
Compute \(t^i \oplus x \)

Alice obtains \(\{ A^i = t^i \oplus s^i x \} \) by using \(\kappa \) OT\(^n-s\)

Bob knows this if \(x_i = 0 \). Mask \(f_{i0} \) by it

\(A_i = t_i \oplus x_i s \)
\(A_i \oplus s = t_i \oplus (1 \oplus x_i) s \)

Bob knows this if \(x_i = 1 \). Mask \(f_{i1} \) by it
FULL OT EXTENSION

For $i = 1$ to n:
 For $j = 1$ to κ: $t_{ij} \leftarrow \{0, 1\}$
 For $i = 1$ to κ:
 Write $t^i = (t_{i1}, ..., t_{in})$
 $R_i \leftarrow \text{Reply} \left(q_i, (t^i, t^i \oplus x) \right)$

$s \leftarrow \{0, 1\}^\kappa$

For $i = 1$ to κ:
 $q_i \leftarrow Q \left(s_i \right)$

$(q_1, ..., q_\kappa)$

$(R_1, ..., R_\kappa)$

$(y_{i0}, y_{i1}, ..., y_{n0}, y_{n1})$

For $i = 1$ to n:
 $m_i \leftarrow y_{i,x_i} \oplus H \left(t_i \right)$
Return m

$x \in \{0, 1\}^n$

For $i = 1$ to κ:
 $A^i \leftarrow \text{Answer} \left(R_i \right)$ // = $t^i \oplus s_i \times$
// $A_i = t_i \oplus x_i s$, $A_i \oplus s = t_i \oplus (1 \oplus x_i) s$

For $i = 1$ to n:
 $y_{i0} \leftarrow f_{i0} \oplus H \left(A_i \right)$
 $y_{i1} \leftarrow f_{i1} \oplus H \left(A_i \oplus s \right)$

For $i \in \{1, ..., n\}$:
 $(f_{i0}, f_{i1}) \in \{0, 1\}^\mu$
SECURITY

❖ **Alice's privacy:**

❖ Bob sees q_i and $m_i = \ldots + H(\ldots)$

❖ Alice's privacy guaranteed by OT privacy and security of H (*will not elaborate on the latter*)

❖ **Bob's privacy:**

❖ Alice sees $\{t^i \oplus s_i x\}_i$ - no information revealed about x since t^i is random
EFFICIENCY

✧ **Alice:** κ OT-s of n-bit strings, $2n$ H-s

✧ **Bob:** κ OT-s of n-bit strings, n H-s

✧ If $\kappa << n \approx |\text{circuit size}|$ and $\text{Cost}(H) << \text{Cost}(\text{OT})$:

 ✧ huge benefit

 ✧ OT dominates the cost of GC

 ✧ OT extension makes GC *many* times faster
Use a more efficient symmetric encryption scheme

gives speedup, but not certain how much

AES is implemented in Intel hardware

Replace AES with a hash function

use Bitcoin hardware
Can we reduce the overhead of GarbledGate?

Alice: from 8 AES to smaller number?

Bob: from 8 AES\(^{-1}\) to smaller number?
FREEXOR TECHNIQUE

- Alice generates random, secret "global difference" Δ
- She always sets $K_{wI} \leftarrow K_{w0} \oplus \Delta$
- For each XOR gate $w \leftarrow u \oplus v$:
 - set $K_{w0} \leftarrow K_{u0} \oplus K_{v0}$
- The rest of the protocol is unchanged
- Security ok:
 - since Bob never obtains both K_{w0}, K_{wI}, then Δ stays secret
FREEXOR TECHNIQUE

- For each XOR gate: set $K_{w_0} \leftarrow K_{u_0} \oplus K_{v_0}$
 - $K_{u_0} \oplus K_{v_0} = K_{w_0}$
 - $K_{u_1} \oplus K_{v_0} = K_{w_0} \oplus \Delta = K_{w_1}$
 - $K_{u_0} \oplus K_{v_1} = K_{w_0} \oplus \Delta = K_{w_1}$
 - $K_{u_1} \oplus K_{v_1} = K_{w_0} \oplus \Delta \oplus \Delta = K_{w_0}$
- No need to transfer $G[w]$ for XOR gates
- Computation:
 - $\text{AES} \ast O(\text{|non-XOR gates|}) + \text{XOR} \ast O(\text{|XOR gates|})$
WHY RELEVANT?

- `{XOR, AND}` is a basis of all possible gates
 - Boolean versions of `+` and `·`
- **On "average":**
 - Garbled circuits twice more efficient
- **For many circuits, XOR gates dominate strongly**
 - Garbled circuits become many times more efficient
Idea: AND is a **symmetric** operation

- $x \land y$ is a function of $x + y$, not of x and y individually
- $(0 \land 0) = 0$, $(0 \land 1) = (1 \land 0) = 0$, $(1 \land 1) = 1$

Thus $x \land y = f_{001}(x + y)$

FreeSym

FreeAdd: use a random Δ in all + gates

- K_{zo}, K_{zi}
- f_{001}
- $K_{wo} = K_{uo} + K_{vo}$, $K_{wi} = K_{wo} + \Delta$, $K_{w2} = K_{wo} + 2\Delta$
- $G_0 \leftarrow \text{AES}(K_{wo}, 0^{20} || K_{zo})$
- $G_1 \leftarrow \text{AES}(K_{wi}, 0^{20} || K_{zo})$
- $G_2 \leftarrow \text{AES}(K_{w2}, 0^{20} || K_{zi})$
- $G[w] \leftarrow \text{random shuffle of } G_i$
- $K_{uo}, K_{ui} = K_{uo} + \Delta$
- $K_{vo}, K_{vi} = K_{vo} + \Delta$
- $8 \text{ AES} \rightarrow 3 \text{ AES}$

Local computation

Similar optimization possible with all symmetric gates
COMPARISON: FREEXOR ETC

<table>
<thead>
<tr>
<th></th>
<th>XOR</th>
<th>AND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>FreeXOR</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>FreeSym</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>"FleXOR" (not covered)</td>
<td>0-2</td>
<td>2</td>
</tr>
</tbody>
</table>
Highly parallel:
- after keys are computed, Alice can compute all garbled gates $G[w]$ in parallel

Many more optimizations than fit on the margins

Very active research area

especially active: efficiency in malicious model

A GPU implementation can process hundreds/thousands of gates in parallel

not covering in this course - just not enough time
GC: OUTRO

- Computationally very efficient

- **Main problem:** huge communication

- **Another problem:** circuit optimization

 - In many cases, it is more natural to work in some other computational model

 - For example: circuit for integer multiplication is large
WHAT NEXT?

- We showed how to compute almost anything securely
 - in the semihonest model

- Starting from the next lecture:
 - What to do when parties are malicious?