Exercise (Merkle trees are binding commitments). Show that Merkle tree is a binding commitment if the underlying hash function family H is (t, ε)-collision resistant. Recall that Merkle tree is a binary tree with vertices (c_{ij}), where intermediate leafs are computed as

$$c_{ij} = h(c_{i+1,2j}, c_{i+1,2j+1}), \quad i \in \{0, \ldots, k-1\}, \quad j \in \{0, \ldots, 2^i - 1\}$$

and leafs $c_{k,j}$ for $j \in \{0, 2^k - 1\}$ are messages to be committed. The commitment digest is c_{00} and to open a message $c_{k,j}$ you have to open minimal number of leaks and intermediate vertices needed to compute c_{00}. A commitment is valid, if one indeed obtains c_{00} from the released messages.

Solution. Let us first illustrate how one uses Merkle tree to commit a bitstring m consisting of eight blocks $m_7, \ldots, m_0 \in M$. Note that the hash function h used to compute the commitment digest c_{00} must be of type $h : M \times M \to M$. In order to commit the message m, we first treat its blocks as third level nodes in the Merkle tree and compute the values of intermediate nodes c_{ij} according to the specification. Let GetRoot be the corresponding algorithm that computes the root of the hash tree, as illustrated below.

In order to double open the commitment c_{00}, one must produce alternative message \overline{m} consisting also from eight blocks $\overline{m}_7, \ldots, \overline{m}_0$ such that the digest computation leads to the same result. More generally, we are interested what is the best advantage against the binding game:

$$G
\begin{align*}
h &\leftarrow H \\
(c_{00}, m, \overline{m}) &\leftarrow A(h) \\
\text{if } c_{00} \neq \text{GetRoot}(m) \text{ then return } 0 \\
\text{if } c_{00} \neq \text{GetRoot}(\overline{m}) \text{ then return } 0 \\
\text{return } [m \neq \overline{m}]
\end{align*}$$

where the third and fourth line check that the c_{00} is indeed a valid commitment to m and \overline{m}. Also, note that the public parameter of the commitment scheme is the description of a hash function h and public parameter generation is random sampling of an hash function.

It is straightforward to see that Merkle tree without additional restrictions is not binding at all. For example, let c_{00} be the digest corresponding to the message blocks m_0, \ldots, m_7. Then four block message \overline{m} consisting intermediate values:

$$c_{20} = h(m_0, m_1), \quad c_{21} = h(m_2, m_3), \quad c_{22} = h(m_4, m_5), \quad c_{23} = h(m_6, m_7)$$

leads to the same digest c_{00}. Hence, we must clarify the definition of the Merkle tree commitments by requiring that the number of layers k is fixed, as implicitly suggested by the exercise text.
Next, we prove that commitment scheme based on the Merkle tree with k levels is a binding under the assumption that the hash function family H is (t, ε)-collision resistant. For that, we must convert an adversary A against the binding game G to another adversary B that can break collision resistance property of the underlaying hash function family H. Recall that the collision resistance property of an hash function family is defined through the following game:

\[
Q
\begin{cases}
h \leftarrow H \\
(x_0, x_1) \leftarrow B(h) \\
\text{if } x_0 = x_1 \text{ then return } 0 \\
\text{return } [h \leftarrow h(x)] .
\end{cases}
\]

Assume that A returns a valid double opening $(c_{00}, m, \overline{m})$. Then there must be two instances of Merkle trees with the same root node that can be aligned, as illustrated below.

![Diagram of a Merkle tree with double opening](image)

More formally, let c_{ij} denote the intermediate values corresponding to the message m and let \overline{c}_{ij} denote intermediate values corresponding to the message \overline{m}. It is easy to see that if the root of a subtree $c_{i,j}$ has the same value has $\overline{c}_{i,j}$, then we have either identical children: $c_{i+1,2j} = \overline{c}_{i+1,2j}$ and $c_{i+1,2j+1} = \overline{c}_{i+1,2j+1}$ or there is an explicit hash collision:

\[
(c_{i+1,2j}, c_{i+1,2j+1}) \neq (\overline{c}_{i+1,2j}, \overline{c}_{i+1,2j+1}) ,
\]

\[
h(c_{i+1,2j}, c_{i+1,2j+1}) = h(\overline{c}_{i+1,2j}, \overline{c}_{i+1,2j+1}) .
\]

By applying this observation recursively, we either discover a hash collision or all vertices in the tree are identical. The latter cannot happen as $m \neq \overline{m}$ in case of valid double opening.

Hence, we can extract hash collision from a double opening by splitting the messages m and \overline{m} into the kth layer values $c_{k,j}$ and $\overline{c}_{k,j}$ and then computing the values c_{ij} and \overline{c}_{ij} of next layers until we find the hash
collision. The corresponding adversary is depicted below:

\[B(h) \]

\[(c_{00}, m, \overline{m}) \leftarrow A(h) \]

Let \(c_{k0}, \ldots, c_{k2^k-1} \) be the block representation of \(m \).
Let \(\overline{c}_{k0}, \ldots, \overline{c}_{k2^k-1} \) be the block representation of \(\overline{m} \).

For \(i \in (k, \ldots, 1) \) do

For \(j \in (0, \ldots, 2^k-1) \) do

\[x_0 \leftarrow (c_{i,2j}, c_{i,2j+1}) \]
\[x_1 \leftarrow (\overline{c}_{i,2j}, \overline{c}_{i,2j+1}) \]
\[c_{i,j} \leftarrow h(c_{i,2j}, c_{i,2j+1}) \]
\[\overline{c}_{i,j} \leftarrow h(\overline{c}_{i,2j}, \overline{c}_{i,2j+1}) \]
\[\hat{c}_{i-1,j} \leftarrow h(\overline{c}_{i,2j}, \overline{c}_{i,2j+1}) \]

if \(c_{i,j} = \overline{c}_{i,j} \land x_0 \neq x_1 \) then

[return \((x_0, x_1)\)]

return \(\perp \)

Note that \(B \) is guaranteed to succeed if \(A \) provides a valid double opening, since the condition inside the second loop must be met for some iteration by the reasoning given above. Hence, we have established

\[\Pr[Q_B = 1] \geq \Pr[G^A = 1] \]

Note that \(B \) can be more successful than \(A \), as invalid double opening might still reveal the hash collision. Of course, the probability of such events is negligible for reasonable adversaries.

Note that the running-time of \(B \) is \(t_A + \Theta(2^k) \), where \(t_A \) is the running-time of \(A \) and \(k \) is the height of the tree. At first glance the overhead \(\Theta(2^k) \) seems worrisome, as it seems to lead to exponential slowdown. However, note that \(k \) must be small in practical applications as the length of the committed message is also \(\Theta(2^k) \) and the time needed to verify the digest is also \(\Theta(2^k) \). In fact, the overhead of \(B \) roughly corresponds to the verification of both decommitments. As a result, we still obtain a tight connection between the collision resistance and binding property. Namely, if the hash function family \(H \) is \((t, \varepsilon)\)-collision resistant, then Merkle tree commitment is \((t - \Theta(2^k), \varepsilon)\)-binding.