Problem 1: Random oracle model

Write down the definition of IND-CPA security in the random oracle model (for symmetric encryption schemes).

Solution. This can be specified textually or as a picture:

Definition 1 (IND-CPA in the random oracle model) An encryption scheme (KG, E, D) consisting of a key-generation algorithm KG, an encryption algorithm E, and a decryption algorithm D is IND-CPA in the random oracle model if for any polynomial-time algorithm A there is a negligible function μ, such that for all $\eta \in \mathbb{N}$ we have that

$$\left| \Pr[b' = b : H \xleftarrow{\$} \text{Fun}_M \to \mathbb{N}, k \xleftarrow{\$} KG^H(1^\eta), b \xleftarrow{\$} \{0, 1\}, (m_0, m_1) \xleftarrow{\$} A^{H,E^H(k, \cdot)}(1^\eta), c \xleftarrow{\$} E^H(k, m_b), b' \xleftarrow{\$} A^{H,E^H(k, \cdot)}(1^\eta, c)] - \frac{1}{2} \right| \leq \mu(\eta).$$

(Here we quantify only over algorithms A that output (m_0, m_1) with $|m_0| = |m_1|$.)

Definition 2 (IND-CPA in the random oracle model) An encryption scheme (KG, E, D) is IND-CPA in the random oracle model if for any polynomial-time algorithm A there is a negligible function μ, such that for all $\eta \in \mathbb{N}$ we have that $|\Pr[b' = b] - \frac{1}{2}| \leq \mu(\eta)$ in the game in Figure 1.

(Here we quantify only over algorithms A that output (m_0, m_1) with $|m_0| = |m_1|$.)