MTAT.05.125 Introduction to Theoretical Computer Science

Autumn 2015

Vitaly Skachek
Estonian version by Reimo Palm
English version by Yauhen Yakimenka

Myhill-Nerode theorem proves another property of all regular languages. Analogously to the pumping lemma, we can use this property to prove that a language is not regular. But first we need to give some definitions.

Definition. Let x and y be two strings and L be a language (not necessarily regular). We say that x and y are **distinguishable** by L if there exists such a string z that exactly one string of xz and yz belongs to L. Otherwise we call x and y **indistinguishable** by L.

Definition. Let X be a set of strings and L be a language (not necessarily regular). We say that the set X is **pairwise distinguishable** by L if every two distinct strings in X are distinguishable by L.

Definition. Index of a language L is the maximum number of elements in any set that is pairwise distinguishable by L.

To prove the Myhill-Nerode theorem, we will need two lemmas.

Lemma A. If L is recognised by a DFA with k states, then L has index at most k.

Proof. We will prove by contradiction.

Let M be a DFA with k states that recognise L. Suppose that index of L is greater than k. Then there is a set X with more than k elements such that X is pairwise distinguishable by L.

Since M has only k states, there exist two distinct strings $x_1, x_2 \in X$ such that $\delta(q_0, x_1) = \delta(q_0, x_2)$. That is, after reading x_1 or x_2, M is in the
same state. Then $\delta(q_0, x_1z) = \delta(q_0, x_2z)$ for any string z, i.e. M is in the same state after reading x_1z or x_2z. Therefore x_1z and x_2z are either both accepted or both rejected by M for any string z. This means x_1 and x_2 are indistinguishable by L. Contradiction!

Therefore the assumption was wrong and index of L is not more than k.

\[\square \]

Lemma B. If index of a language L is a finite number k then L is recognised by a DFA with k states.

Proof. Let $X = \{x_1, x_2, \ldots, x_k\}$ be pairwise distinguishable by L. We construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognises L.

Let $Q = \{q_1, q_2, \ldots, q_k\}$. For each $q_i \in Q$ and $a \in \Sigma$ we define: $\delta(q_i, a) = q_j$ where j is such that x_ia is indistinguishable from x_j. Such x_j exists and is unique.

Indeed, x_ia should be indistinguishable from some x_j because otherwise we could increase the set X by adding x_ia and that would contradict the fact that the index of L is k. Such x_j is also unique because otherwise there would be indistinguishable strings in X.

Let $F = \{q_i \mid x_i \in L\}$ and $q_0 = q_j$ such that ε is indistinguishable from x_j.

Automaton M is constructed in the way that for any q_i:

$$\{x \mid \delta(q_0, x) = q_i\} = \{\text{strings indistinguishable from } x_i\}.$$

Every string y is indistinguishable from some $x_i \in X$ (otherwise we could include this y in X which contradicts that index of X is k). Having fixed y and x_i, consider all strings z: for any z two strings yz and x_iz are either both belong to L or none of them belong to L (because y and x_i are indistinguishable by L).

It is also true for any particular z, for example $z = \varepsilon$. It means that if $y \in L$ than $x_i\varepsilon = x_i \in L$ and the automaton M finishes in an accept state. But if $y \notin L$ then $x_i \notin L$ and the automaton M finishes in non-accept state. Therefore M accepts exactly strings from L.

\[\square \]

Myhill-Nerode theorem. *Language L is regular if and only if it has a finite index. Moreover, its index is the size of the smallest DFA that recognises L.*

Proof. Suppose that L is regular. Let k be the number of states in DFA that recognises L. Then, from lemma A, L has index at most k.

Conversely, if L has index k, from lemma B there exists DFA that recognises it; and this DFA has k states, and thus L is regular.
Next, we show that the index of L the size of the smallest DFA accepting it. Suppose that the index of L is exactly k. Then, by lemma B, there is a k-state DFA accepting L. If there were a smaller DFA accepting L, we could show by lemma A that the index of L is smaller than k.

\[\square\]

Practise session

Since it is the last week of part 2, we solve here some problems on different topics.

1. Show that $L = \{1^{2^n} \mid n \geq 0\}$ is not regular. (It a set of all strings of ones of length 2^n for $n \geq 0$.)

 Solution. We will use a pumping lemma (see previous lecture for details).

 Assume that L is regular and p is its pumping length give by the pumping lemma. Choose $w = 1^{2^p}$. Clearly, $w \in L$ and $|w| \geq p$. Therefore $w = xyz$, where $|xy| \leq p$, $|y| > 0$ and for all $i \geq 0$ we have $xy^iz \in L$.

 Since $p < 2^p$ for any $p \geq 0$, so $|y| < 2^p$. Thus $|xyyz| = |xyz| + |y| < 2^p + 2^p = 2^{p+1}$. That is why

 \[2^p < |xyyz| < 2^{p+1}\]

 and the length of the word $xyyz$ is not a power of 2. It means that $xyyz / \in L$. Contradiction. Therefore L is not regular.

2. Let L be the language of all strings consisting of some positive number of zeros, followed by some string twice, followed by some positive number of zeros:

 \[L = \{0^kww0^m \mid k, m \geq 1, w \in \{0, 1\}^*\} \]

 For example, $0000\overbrace{10101}^w\overbrace{10101}^w00 \in L$

 Show that L is not regular.

 Solution. We will use Myhill-Nerode’s theorem. More precisely, we show that there is an infinite set of strings, such that any two of them are distinguishable with respect to L. This means that index of L is infinite and L is not regular.

 Consider the set $\{01^k0 \mid k \geq 1\}$. Choose two arbitrary words from this set, $01^{k_1}0$ and $01^{k_2}0$ where $k_1 \neq k_2$. Let $z = 1^{k_1}00$. On the one hand, $01^{k_1}0z = 01^{k_1}01^{k_1}00$ obviously belongs to L.

 On the other hand, $01^{k_2}0z = 01^{k_2}01^{k_1}00$. If it is in L, then it is of the form 0^kww0^m for some w. Then, w should contain at least one zero. Then, w should end with zero, and so it is $0ww0$. Then, w should be 1^{k_1} and 1^{k_2}.
at the same time. It is impossible. So all strings from the set \(\{01^k0 \mid k \geq 1\} \) are distinguishable, and the index of \(L \) is infinity, i.e. it is not regular.

3. Let \(C_5 = \{x \mid x \text{ is a binary number that is multiple of 5}\} \). Show that \(C_5 \) is regular.

Solution. We construct DFA \(M = (Q, \Sigma, \delta, q_0, F) \) that recognises \(C_5 \). Let \(Q = \{q_0, q_1, q_2, q_3, q_4\} \), \(\Sigma = \{0, 1\} \), \(F = \{q_0\} \), start state be \(q_0 \) and transition function be

\[
\begin{array}{c|cc}
\text{read} & 0 & 1 \\
\hline
q_0 & q_0 & q_1 \\
q_1 & q_2 & q_3 \\
q_2 & q_4 & q_0 \\
q_3 & q_1 & q_2 \\
q_4 & q_3 & q_4 \\
\end{array}
\]

State diagram of this automaton is as follows

![State diagram of the automaton for \(C_5 \)](image)

The state of the automaton stores the reminder of currently read input divided by 5: states \(q_0, \ldots, q_4 \) correspond to reminders 0, \ldots, 4, respectively (so \(q_0 \), i.e. remainder 0, is accept state).

If the number that we read so far is \(x \) with remainder \(x \mod 5 = r \) and we read one more digit:

<table>
<thead>
<tr>
<th>read number</th>
<th>remainder</th>
<th>remainders (respectively)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (x \mapsto 2x)</td>
<td>(r \mapsto 2r \mod 5)</td>
<td>((0, 1, 2, 3, 4) \mapsto (0, 2, 4, 1, 3))</td>
</tr>
<tr>
<td>1 (x \mapsto 2x + 1)</td>
<td>(r \mapsto (2r + 1) \mod 5)</td>
<td>((0, 1, 2, 3, 4) \mapsto (1, 3, 0, 2, 4))</td>
</tr>
</tbody>
</table>

According to respective change of remainders we build the transition function. For example, if we have a number with binary representation \(x \) with remainder\(^1\) 3 and we read 1, then the new number will have binary representation \(x1 \) and remainder \((3 \cdot 2 + 1) \mod 5 = 7 \mod 5 = 2 \); hence we put arrow \(q_3 \rightarrow q_2 \) with label “1”.

Let us see for instance how the automaton works on input \(11110 \) (i.e. binary representation of 30):

\(^1\)Note that exact \(x \) is not important; it is only a remainder that matters.
4. Are the following statements true or false?

(a) If $L_1 \cup L_2$ is regular and L_1 is finite, then L_2 is regular.
(b) If $L_1 \cup L_2$ is regular and L_1 is regular, then L_2 is regular.
(c) If $L_1 \cap L_2$ is regular and L_1 is regular, then L_2 is regular.
(d) If L^* is regular then L is regular.

Solution.

(a) True. Note that

$$L_2 = (L_1 \cup L_2) \cap (L_1 \setminus L_2)^c,$$

where c stand for complementary language. $L_1 \cup L_2$ is regular (given), $L_1 \setminus L_2$ is regular (every finite language is regular) and $(L_1 \setminus L_2)^c$ is regular as complementary to regular 2. Therefore L_2 is an intersection of two regular languages and thus regular itself.

(b) False. Consider $L_1 = \Sigma^*$ and L_2 being any nonregular language. Then $L_1 \cup L_2 = \Sigma^*$ is regular but L_2 is not.

(c) False. Let $L_1 = \{\varepsilon, 0\}$. This is a finite language and thus regular. Let $L_2 = (00)^* \cup \{0^n \mid n \geq 0, n \text{ is prime}\}$. It could be shown this language is not regular. However $L_1L_2 = 0^*$ is regular.

(d) False. Let $L = \{0^n1^n \mid n \geq 0\} \cup \{0, 1\}$. This language is not regular (could be proven analogously to example 1 in lecture 8). But $L^* = \Sigma^*$ is regular.

\[\text{To see that complementary to a regular language } L \text{ is also regular, we note that from DFA for } L \text{ we build DFA for } L^c \text{ by just making all accept states be non-accept, and vice versa.}\]