Nonregular languages

Consider the following language:

\[B = \{ 0^n1^n \mid n \geq 0 \}. \]

Is there a DFA that recognises \(B \)? No!

Intuition: an automaton should “remember” how many zeros it has seen.

It needs an infinite number of states for doing so.

Another example

\[C = \{ w \mid w \text{ has equal number of 0’s and 1’s} \}. \]

Pumping lemma

All regular languages have a certain property: each string of sufficiently large length contains a substring, which can be repeated any number of times, with the resulting strings remaining in the language.

Pumping lemma. If \(L \) is a regular language then there exists a number \(p \) such that if \(w \in L \), \(|w| \geq p \), then \(w \) could be represented as \(w = xyz \) and the following three conditions are satisfied:

1. for all \(i \geq 0 \) it holds that \(xy^iz = xyy\cdots yz \in L \);
2. $|y| > 0$;

3. $|xy| \leq p$.

Here $|w|$ denotes the length of the string w. Either x or z (or both) can be ε, but not y.

Idea of the proof. Let p be the number of states of the automaton recognising L. Consider the run of the automaton on the input w of length $|w| = n$:

If $n \geq p$, there should be a state q_j which is repeated twice. We can repeat the substring between the appearances of q_j arbitrary number of times.

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognising L, and p be a number of states of M. Let $w = w_1w_2\ldots w_n$ be a string in the language L with $n \geq p$. Let $q_0 = q_{i_0} \rightarrow q_{i_1} \rightarrow q_{i_2} \rightarrow \ldots \rightarrow q_{i_{n-1}} \rightarrow q_{i_n} = q_a$ be a sequence of states that M enters when processing w: for each $j = 0, 1, \ldots, n - 1$ we have $\delta(q_{i_j}, w_j) = q_{i_{j+1}}$.

There are $n + 1 \geq p + 1$ states in this sequence. Since automaton has only p states, amongst the first $p + 1$ states $q_0, q_{i_1}, \ldots, q_{i_p}$ there exists a state q_j that appears at least twice:

$q_0 = q_{i_0} \xrightarrow{w_1} \ldots \xrightarrow{w_l} q_{i_l} = q_j \xrightarrow{w_{l+1}} \ldots \xrightarrow{w_r} q_{i_r} = q_j \xrightarrow{w_{r+1}} \ldots \xrightarrow{w_n} q_{i_n} = q_a$.

Here q_{i_l} is the first appearance of q_j and q_{i_r} is the second appearance of it ($l < r \leq p$). Denote:

$x = w_1w_2\ldots w_l,$

$y = w_{l+1}w_{l+2}\ldots w_r,$

$z = w_{r+1}w_{r+2}\ldots w_n.$
Substring x takes M from q_0 to q_j, y takes M from q_j to q_j (forms a loop) and z takes M from q_j to q_a. Therefore, M should accept xy^iz for any $i \geq 0$.

We proved the first condition of the lemma.

Since $l < r$ then $|y| = r - l > 0$. This proves the second condition of the lemma.

And finally to prove the third condition of the lemma, we note that $|xy| = r \leq p$.

Example 1. Show that the language

$$B = \{0^n1^n \mid n \geq 0\}$$

is not regular.

Assume, to the contrary, that B is regular. Let p be the length given by the pumping lemma.

Take $w = 0^p1^p \in B$. Since $|w| \geq p$, we can write $w = xyz$, such that for all $i \geq 0$ it holds $xy^iz \in B$. From the condition 3 of the pumping lemma $|xy| \leq p$ and thus $|y| \leq |xy| \leq p$. So y is situated entirely in the first part of w and, hence, it contains only zeros. I.e. $xyyz$ has more zeros and therefore it does not belong to the language B. This contradicts the pumping lemma. Thus, the assumption that B is regular was wrong and B is not a regular language.

Practise session

1. Show that the language

$$L = \{w \mid w \text{ has equal number of 0’s and 1’s}\}$$

is not regular.

Solution. Assume, to the contrary, that L is regular and let p be the “pumping length”, given by the pumping lemma. Take $w = 0^p1^p \in L$. Clearly, $|w| \geq p$. Then we can apply pumping lemma and represent w as $w = xyz$ (with the three conditions holding).

From the condition 3, $|xy| \leq p$, therefore y should contain only zeros (because first p characters of w are zeros). Hence, $xyyz$ contains more zeros than xyz. And, since in xyz number of zeros and ones was the same, $xyyz$ contains more zeros that ones. But from the condition 1 of the lemma, $xyyz$ should also belong to the language L, i.e. should have equal number of zeros and ones. Contradiction! Therefore the assumption that L is regular was wrong and L is not regular.
2. Show that the language $L = \{ ss \mid s \in \{0, 1\}^* \}$ is not regular.

Solution. Assume, to the contrary, that L is regular and p is its “pumping length”. Take $w = 0^p10^p1 \in L$. Obviously, $|w| \geq p$

Then there should exist x, y, z, such that $w = xyz$ and conditions of the pumping lemma hold. Since $|xy| \leq p$, y consists of zeros only. Therefore $xyyz$ does not have the form ss as its first block of zeros is longer than the second block of zeros. So $xyyz \notin L$. Contradiction to the lemma’s condition 1! That’s why the assumption that L is regular was wrong.

3. Show that the language $L = \{ 1^{n^2} \mid n \geq 0 \}$ is not regular.

Solution. Assume, to the contrary, that L is regular and p is its “pumping length”. Take $w = 1^{p^2} \in L$; $|w| = p^2 \geq p$. We could represent w as $w = xyz$, where for all $i \geq 0$ it holds that $xy^iz \in L$.

Consider the string xy^2z. As $|y| \leq |xy| \leq p$, then $|xy^2z| = |xyz| + |y| \leq p^2 + p$.

On the other hand, since $|y| > 0$, we have $|xy^2z| = |xyz| + |y| > |xyz| = p^2$. We have:

$$p^2 < |xy^2z| \leq p^2 + p = p(p + 1) < (p + 1)^2,$$

which means that the length of xy^2z is strictly between two squares of consecutive integers and therefore it cannot be a square of any integer. Thus, $xy^2z \notin L$. Contradiction! Therefore L is not regular.

4. Take $L = \{ 0^n1^m \mid n > m \}$. Prove that L is not regular.

Solution. We repeat the same proof scheme:

- Assume that L is regular and p is its “pumping length”.
- Take $w = 0^{p+1}1 \in L$. Clearly, $|w| \geq p$.
- We can apply the pumping lemma. I.e. there exist x, y, z, such that $w = xyz$ and the conditions of the pumping lemma are satisfied.
- From the pumping lemma’s condition 1, for all $i \geq 0$ we have that $xy^iz \in L$. In particular, take $i = 0$. Therefore xz should be in L too.\footnote{But in the next steps we will show the opposite.}
- Since $|xy| \leq p$, y consists of zeros only. Therefore removing y from xyz decreases the number of zeros by at least one and xz will have not more than p zeros. This contradicts the definition of L and, hence, $xz \notin L$.
- We end up with contradiction. This means that original assumption was wrong and L is not a regular language.