We will show that there exist languages, which are not even Turing-recognisable.

Definition. A language L is called co-Turing recognisable if it is the complement of a Turing-recognisable language.

Theorem. A language L is decidable if and only if it is Turing-recognisable and co-Turing recognisable.

Proof.

1. If L is decidable, the it is clearly also recognisable. Moreover, its complement is also Turing-recognisable (construct Turing-machine M that simulates the machine M_L that decides L, M rejects if and only if M_L accepts).

2. Assume that L and \bar{L} (complement of L) are Turing recognisable. Let M_L be a machine that recognises L and $M_{\bar{L}}$ be a machine that recognises \bar{L}. The following machine M decides L then.

Machine M:

1. Runs both M_L and $M_{\bar{L}}$ on input w in parallel.

2. If M_L accepts – accepts, if $M_{\bar{L}}$ accepts – rejects.

(Running in parallel means that M simulates one step of M_L after one step of $M_{\bar{L}}$, etc.)

Now we show that M indeed decides L. Any string w is either in L or in \bar{L}. Therefore, either M_L or $M_{\bar{L}}$ accepts w. M always halts since at least one of the machines halts. If $w \in L$ then M_L accepts and so M accepts. If $w \in \bar{L}$ then $M_{\bar{L}}$ accepts and so M rejects. \square
Corollary. Language L_{TM} is not Turing-recognisable.

Proof. If L_{TM} were Turing-recognisable, then (since L_{TM} is Turing-recognisable) L_{TM} would be Turing-decidable. Contradiction. \qed

Define the language:

$$\text{HALT} = \{\langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ halts on input } w\}.$$

Theorem. HALT is undecidable.

Proof. For the sake of contradiction, assume that HALT is decidable. We will show that from this assumption it follows that L_{TM} is decidable.

Assume that M_H is a Turing machine that decides HALT. We use M_H to construct M_L, which will decide L_{TM}. On input $\langle M, w \rangle$ machine M_L does the following:

1. Runs M_H on input $\langle M, w \rangle$. Since we assumed HALT to be decidable, M_H always halts.
2. If M_H rejects M_L rejects.
3. If M_H accepts M_L simulates M on w until it halts.
4. If M accepted w M_L accepts, if M rejected w M_L rejects.

If M accepts w then M_L will accept $\langle M, w \rangle$. If M rejects w or if M runs infinitely long on w, M_L will reject $\langle M, w \rangle$. Therefore, M_L decides L_{TM}. Contradiction! \qed

This method of proof is called “reduction from L_{TM}”:

$$L_{TM} \leq_M \text{HALT} \quad \text{can decide} \leftrightarrow \text{can decide}$$

HALT is at least as hard as L_{TM}.

Definition. Function $f : \Sigma^* \rightarrow \Sigma^*$ is a computable function if some Turing machine M on every input w halts with just $f(w)$ on its tape.

Definition. Language A is mapping reducible to language B, written $A \leq_M B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w

$$w \in A \iff f(w) \in B.$$

The function f is called the reduction from A to B.

Theorem. If $L_A \leq_M L_B$ and L_B is decidable, then L_A is decidable too.

Proof. Let M_B be a Turing machine that decides L_B and f be a reduction from L_A to L_B. We describe a machine M_A that decides L_A:

1. On input w compute $f(w)$;
2. Run M_B on $f(w)$ and output what M_B outputs.

M_A decides language L_A indeed:

- If $w \in A$, then $f(w) \in B$, since f is reduction. M_B accepts $f(w)$ – therefore M_A accepts w.
- If $w \notin A$, then $f(w) \notin B$. M_B rejects $f(w)$ and therefore M_A rejects w.

Practise session

1. Define

$$L_\emptyset = \{\langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset\}.$$

Show that L_\emptyset is undecidable.

Solution. We show reduction from L_{TM} to L_\emptyset where

$$L_{TM} = \{\langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts } w\},$$

which is know to be undecidable. Reduction:

\[
\begin{array}{ccc}
L_{TM} & \leq_M & L_\emptyset \\
\text{decidable} & \iff & \text{decidable}
\end{array}
\]

Let M_\emptyset be a Turing machine that decides language L_\emptyset. We use it to construct Turing machine M_L that decides L_{TM}.

\[\]
Given Turing machine M, construct Turing machine M_w that rejects any input except w, but on input w it works as before (i.e. simulates M on w).

If M accepts w then M_w accepts w. If M does not accept w, then M_w does not accept w:

$$L(M_w) = \begin{cases} \{w\}, & \text{if } M \text{ accepts } w \\ \emptyset, & \text{if } M \text{ does not accept } w. \end{cases}$$

Machine M_w is formally defined as follows:

1. If input is not w, then M_w rejects.
2. If input is w, then M_w simulates M on w and answers accordingly.

Now, we construct Turing machine M_L as follows. On the input $\langle M, w \rangle$, M_L does the following:

1. Constructs a Turing machine M_w as described above.
2. Runs M_\emptyset on $\langle M_w \rangle$ (i.e. on description of M_w).
3. If M_\emptyset accepts – reject, if M_\emptyset rejects – accept.

Let us show that M_L is correct.

- If M accepts w then M_w accepts w. Therefore $L(M_w) \neq \emptyset$ and therefore in Step 2, M_\emptyset rejects $\langle M_w \rangle$. Therefore, M_L accepts $\langle M, w \rangle$.

- If M does not accept w, then M_w does not accept w. M_w also does not accept any other input. Therefore, $L(M_w) = \emptyset$. Therefore, in Step 2, M_\emptyset accepts $\langle M_w \rangle$. And, hence, M_L rejects $\langle M, w \rangle$.

Conclusion. We constructed M_L, the Turing machine that decides L_{TM}. This is impossible. Contradiction!

Note. The machine M_L should be able to construct M_w from M. However, M_w works exactly as M, except that in the beginning it checks that the input is exactly w. This can be easily done algorithmically.

2. Define

$$L_{EQ} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are Turing machines and } L(M_1) = L(M_2) \}.$$

Show that L_{EQ} is undecidable.
Solution. We perform reduction:

\[L_\varnothing \leq_M L_{\text{EQ}}. \]

For the sake of contradiction, assume that \(M_{\text{EQ}} \) is a Turing machine that decides \(L_{\text{EQ}} \). We construct a machine \(M_\varnothing \) that decides \(L_\varnothing \).

The machine \(M_\varnothing \) does the following on input \(\langle M \rangle \):

1. Runs \(M_{\text{EQ}} \) on input \(\langle M, M_1 \rangle \), where \(M_1 \) is the machine that rejects all inputs.
2. If \(M_{\text{EQ}} \) accepts – accept, if \(M_{\text{EQ}} \) rejects – reject.

Let us show that \(M_\varnothing \) is correct.

- If \(L(M) = \varnothing \), then \(L(M) = L(M_1) \) and hence \(M_{\text{EQ}} \) accepts and \(M_\varnothing \) accepts.
- If \(L(M) \neq \varnothing \) then \(L(M) \neq L(M_1) \), thus \(M_{\text{EQ}} \) rejects and \(M_\varnothing \) rejects.

We constructed machine \(M_\varnothing \) that decides \(L_\varnothing \). Contradiction! Therefore the assumption that \(L_{\text{EQ}} \) is decidable was wrong.

3. Let

\[\text{REGULAR} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) \text{ is a regular language} \} \]

Prove that \(\text{REGULAR} \) is undecidable.

Solution. We show reduction:

\[L_{\text{TM}} \leq_M \text{REGULAR}. \]

Assume that \(\text{REGULAR} \) is decidable, and let \(M_R \) be a Turing machine that decides \(\text{REGULAR} \). We construct Turing machine \(M_L \) that decides \(L_{\text{TM}} \). On the input \(\langle M, w \rangle \), \(M_L \) does the following:

1. Constructs machine \(M_0 \), which on input \(x \) does the following:

 (a) if \(x \) is of the form \(0^n1^n \) – accepts;
 (b) if \(x \) is not of the form \(0^n1^n \), run \(M \) on input \(w \) and accept if and only if \(M \) accepts.
2. Runs \(M_R \) on input \(\langle M_0 \rangle \).
3. If \(M_R \) accepts – accept, if \(M_R \) rejects – reject.
What is the language of M_0?

- If M accepts w, then $L(M_0) = \Sigma^*$. This is regular language.
- If M does not accept w, then $L(M_0) = \{0^n1^n \mid n \geq 0\}$. This is non-regular language.

Therefore:

- if M accepts w then $L(M_0) = \Sigma^*$ and M_R accepts $\langle M_0 \rangle$ in Step 2. Therefore M_L accepts.
- If M does not accept w then $L(M_0)$ is irregular and M_R rejects $\langle M_0 \rangle$ in Step 2. Therefore, M_L rejects.

So M_L accepts $\langle M, w \rangle$ if and only if M accepts w.

Note. All steps are computable by the Turing machines. In particular, constructing M_0 is possible: first M_0 checks for certain type of input and then simulates M on w.

Conclusion. We found that if there exists M_R (the machine that decides REGULAR), then there exists M_L (the machine that decides L_{TM}). Not possible. Contradiction!