Decidable languages

We can express different computational problems as languages. For example, testing whether a particular DFA accepts the given string:

\[L_{\text{DFA}} = \{ \langle A, w \rangle \mid A \text{ is a DFA,} \]
\[\text{that accepts the input string } w \}. \]

Here, \(\langle A, w \rangle \) represents a pair:

- encoding of the DFA \(A \) (list of five ingredients: \(Q, \Sigma, \delta, q_0, F \));
- input string \(w \).

The task of deciding whether DFA \(A \) accepts a string \(w \) is equivalent to checking if the pair \(\langle A, w \rangle \) is in the language \(L_{\text{DFA}} \).

Theorem. \(L_{\text{DFA}} \) is a decidable language.

Proof. We design a TM \(M \) that decides the language \(L_{\text{DFA}} \).

On the input \(\langle A, w \rangle \), the machine \(M \) will simulate the automaton \(A \) on \(w \), and accept/reject according to the automaton’s decision.

First, \(M \) scans the input and determines if the input properly represents a DFA (which we denote as \(A \)) and a string (which we denote as \(w \)). If not, \(M \) rejects.
Second, \(M \) simulates \(A \). It keeps track of \(A \)'s current state and \(A \)'s current position in the input \(w \) by writing the information directly on the tape.

In the beginning, the input of \(M \) is \(w \), and the head position is the leftmost symbol of \(w \). The states and the positions are updated according to the transition function \(\delta \). When \(M \) is finishing processing the last symbol of \(w \), it goes to accept/reject state depending on whether \(A \) is in the accept/reject state.

Similarly define
\[
L_{\text{NFA}} = \{ \langle A, w \rangle \mid A \text{ is an NFA that accepts the input string } w \}\.
\]

Theorem. \(L_{\text{NFA}} \) is a decidable language.

Proof. We present a TM \(M' \) that decides \(L_{\text{NFA}} \): on the input \(\langle A, w \rangle \), \(M' \) does the following:

1. Converts \(A \) into equivalent DFA \(A' \), by using the procedure that was studied in the course.
2. Run the machine \(M \) from the previous theorem on the input \(\langle A', w \rangle \).
3. If \(M \) accepts – accepts, otherwise – rejects.

One more example. Let
\[
L_{\emptyset} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}\.
\]
I.e. all DFAs that do not accept anything.

Theorem. \(L_{\emptyset} \) is a decidable language.

Proof. A DFA \(A \) accepts some string if and only if reaching one of the accept states by travelling along the arrows of the DFA is possible. Therefore, a TM \(\hat{M} \) will test if there exists such a path.

For example, in the automaton

![Automaton Diagram](image-url)
there is a path \(q_0 \to q_1 \to q_3 \to q_4 \). This correspond to the input 010. Therefore \(L(A) \neq \emptyset \) as \(010 \in L(A) \).

TM \(\hat{M} \) works as follows.

1. Mark the start state of \(A \).
2. Repeat until no new states are marked:
 - Mark any unmarked state that has an incoming arrow from any state that was marked already.
3. If no accept state is marked – accept, otherwise – reject.

For the example above, \(\hat{M} \) will mark the states in the following order: \(q_0 \to q_1 \to q_2 \to q_3 \to q_4 \).

\(q_4 \) is marked, so \(\hat{M} \) rejects (\(A \) accepts at least one string).

Undecidable languages

Define:

\[
L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \}.
\]

Theorem. \(L_{TM} \) is undecidable.

Note. We present a proof based on a technique called “diagonalisation”.

Proof. We prove by contradiction. Assume, that there exists a Turing machine \(H \), where

\[
H(\langle M, w \rangle) = \begin{cases}
\text{accepts,} & \text{if } M \text{ accepts } w, \\
\text{rejects,} & \text{if } M \text{ does not accept } w \text{ (either rejects or loops).}
\end{cases}
\]
Now we construct a new machine \(D\), which uses \(H\) as a subroutine. On input \(\langle M \rangle\), \(D\) does the following:

1. Runs \(H\) on input \(\langle M, \langle M \rangle \rangle\).

2. Outputs the opposite of what \(H\) outputs. That is, if \(H\) accepts – \(D\) rejects; if \(H\) rejects – \(D\) accepts.

In summary,

\[
D(\langle M \rangle) = \begin{cases}
\text{accepts}, & \text{if } M \text{ does not accept } \langle M \rangle, \\
\text{rejects}, & \text{if } M \text{ accepts } \langle M \rangle.
\end{cases}
\]

Question: what happens when we run \(D\) with its own encoding \(\langle D \rangle\) as an input? In this case

\[
D(\langle D \rangle) = \begin{cases}
\text{accepts}, & \text{if } D \text{ does not accept } \langle D \rangle, \\
\text{rejects}, & \text{if } D \text{ accepts } \langle D \rangle.
\end{cases}
\]

No matter what \(D\) is supposed to do, it does the opposite. Contradiction. Therefore such \(H\) does not exist.

Practise session

1. Define the language

\[L_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates the string } w \} \]

Show that \(L_{\text{REX}}\) is a decidable language.

Solution. We construct a TM \(M\) that on the input \(\langle R, w \rangle\) does the following:

1. Converts \(R\) into an equivalent NFA \(A\) by using the procedure for conversion that we studied.

2. Gives an input \(\langle A, w \rangle\) to the TM that decides \(L_{\text{NFA}}\).

3. If \(\langle A, w \rangle \in L_{\text{NFA}}\) – accepts, otherwise – rejects.

2. Define the language:

\[L_{\text{DFAEQ}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFA and } L(A) = L(B) \}\]

Prove that \(L_{\text{DFAEQ}}\) is a decidable language.
Solution. We construct a new DFA C, which accepts strings that are accepted by either A or B, but not by both\footnote{Such an automaton is easy to build: it runs A and B in parallel and accepts if and only if exactly one of A and B accepts}. Then

$$L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B)).$$

\begin{itemize}
 \item If $L(A) = L(B)$, then $L(A) \cap \overline{L(B)} = \emptyset$ and $\overline{L(A)} \cap L(B) = \emptyset$, hence $L(C) = \emptyset$.
 \item If $L(A) \neq L(B)$, then there exists $w \in L(A)$, $w \notin L(B)$ (or vice versa). Then $w \in L(A) \cap \overline{L(B)}$ (or, respectively, $w \in \overline{L(A)} \cap L(B)$) and therefore $w \in L(C)$ and $L(C) \neq \emptyset$.
\end{itemize}

So $L(A) = L(B)$ if and only if $L(C) = \emptyset$.

We construct a TM M as follows. On the input $\langle A, B \rangle$ it does the following:

1. Constructs C as described.
2. Runs TM that decides the language L_{\emptyset} on $\langle C \rangle$.
3. If $\langle C \rangle \in L_{\emptyset}$ – accepts. If $\langle C \rangle \notin L_{\emptyset}$ – rejects.

3. Define the language

$$L_1 = \{ \langle A \rangle \mid A \text{ is a DFA that accepts at least one string of the form } 1^* \}.$$

Prove that L_1 is decidable.

Solution. We construct TM M that decides L_1. On the input $\langle A \rangle$, M does the following:

1. Constructs a DFA B that accepts exactly language described by 1^*.

2. Constructs a DFA C, such that

$$L(C) = L(A) \cap L(B).$$

3. Checks if $\langle C \rangle \in L_\emptyset$. If no – accepts, if yes – rejects.

Let us justify the construction.

- If $\langle C \rangle \in L_\emptyset$ then $L(C) = \emptyset$ and so $L(A) \cap L(B) = \emptyset$. This means that for each $w \in L(A)$, it holds that $w \notin L(B)$ and therefore w does not have the form 1^*.

- If $\langle C \rangle \notin L_\emptyset$, then $L(C) \neq \emptyset$ and $L(A) \cap L(B) \neq \emptyset$. Thus there exists w, such that $w \in L(A)$ and $w \in L(B)$. This means that w has the form 1^* and $w \in L(A)$. Correct.

4. Define the language

$$L_{k-\text{STR}} = \{ \langle A, k \rangle \mid A \text{ is a DFA and } L(A) \text{ consists of exactly } k \text{ strings, } k \in \mathbb{N} \}.$$

Prove that $L_{k-\text{STR}}$ is decidable.

Proof. We construct a TM M, which decides $L_{k-\text{STR}}$. On the input $\langle A, k \rangle$, M does the following.

1. Checks the number of states of A. Denote this number by p.

2. Constructs a DFA B, that accepts all strings of length p or longer. Also constructs a DFA C, such that $L(C) = L(A) \cap L(B)$.

3. Generates all strings of length $\leq p - 1$ and tests whether each string is accepted by A. Counts the number of such strings, denote this number by c_A.

4. Tests whether $L(C) = \emptyset$.

5. If $L(C) = \emptyset$ and $c_A = k$ – accepts, otherwise – rejects.

Let us show that M does what we want.

- First, note that due to the pumping lemma, if A accepts any string of length $\geq p$, then it accepts infinitely many strings. This condition is tested by testing if $L(C) = \emptyset$.

- Provided A does not accept any strings of length $\geq p$, c_A is exactly the cardinality of $L(A)$. Thus M accepts if and only if $|L(A)| = k$.

\[\square \]