MTAT.05.082: Introduction to Coding Theory

University of Tartu

Final exam

Instructors: Dr. Vitaly Skachek, Yauhen Yakimenka

June 8th, 2015

Student name:	

Student ID: _____

- 1. This exam contains 10 pages. Check that no pages are missing.
- 2. It is possible to collect up to 110 points. Try to collect as many points as possible.
- 3. Justify and prove all your answers.
- 4. All facts and results that were proved or stated in the class can be used in your solution without a proof. Such results need to be rigorously formulated.
- 5. Any printed and written material is allowed in the class. No electronic devices are allowed.
- 6. Exam duration is 3 hours.
- 7. Good luck!

Question 1	
Question 2	
Question 3	
Question 4	
Total	

Question 1 (20 points).

A code ${\mathcal C}$ is defined as the following set of vectors over ${\mathbb F}_3$

$$\mathcal{C} = \{ \mathbf{c} \mid \mathbf{K} \mathbf{c}^{\mathsf{T}} = \mathbf{0}^{\mathsf{T}} \} ,$$

where

$$oldsymbol{K} = \left(egin{array}{cccccccc} 0 & 1 & 2 & 0 & 1 & 2 & 0 \ 1 & 2 & 0 & 1 & 2 & 0 & 1 \ 2 & 0 & 1 & 2 & 0 & 1 & 2 \ 0 & 1 & 1 & 2 & 2 & 2 & 2 \end{array}
ight) \,.$$

- (a) What is the length n, dimension k and minimum distance d of the code C?
- (b) Find a generator matrix of the code \mathcal{C} .

Question 2 (30 points).

Let \mathcal{C} be an MDS [n, k, d] code over the finite field \mathbb{F} . Denote by H the $(n-k) \times n$ parity-check matrix of \mathcal{C} .

- (a) Let H_1 be a matrix obtained from H by removing *one* of its *columns*. Show that H_1 is a parity-check matrix of an MDS [n-1, k-1, d] code over \mathbb{F} .
- (b) Show that there exists a parity-check matrix H' of \mathcal{C} of the following form:

$$\boldsymbol{H}' = (\boldsymbol{I} \mid \boldsymbol{A}) \; ,$$

where I is the $(n-k) \times (n-k)$ identity matrix, and A is an $(n-k) \times k$ matrix, both over \mathbb{F} .

(c) Let H_2 be a matrix obtained from H by removing *one* of its *rows*. Is it always true that H_2 is a parity-check matrix of an MDS [n, k + 1, d - 1] code over \mathbb{F} ? If yes – prove, otherwise show a counterexample or explain.

Question 3 (30 points).

Let \mathbb{F} be a finite field with q elements and \mathcal{C} be an [n, k, d] code over \mathbb{F} . Consider a matrix M over \mathbb{F} , whose rows are all the codewords of the dual code \mathcal{C}^{\perp} .

- (a) How many rows does M have? Justify your answer.
- (b) Show that if $d \ge 2$, then each symbol $a \in \mathbb{F}$ appears in column ℓ of M exactly q^{n-k-1} times, for $\ell \in \{1, 2, \dots, n\}$.
- (c) Fix any d-1 columns of M and call a matrix composed of these columns M'. Show that for any vector $\boldsymbol{a} = (a_1, a_2, \ldots, a_{d-1}) \in \mathbb{F}^{d-1}$, there are exactly $q^{n-k-d+1}$ rows in M' equal to \boldsymbol{a} .

Question 4 (30 points).

Let $\mathbb{F} = \mathbb{F}_7$ be a field of integer residues modulo 7. Suppose that \mathcal{C} is a [6, 2, 5] Reed-Solomon code over \mathbb{F} , with a parity-check matrix of the code given by

This means that the code locators are $\alpha_1 = 1$, $\alpha_2 = 2$, $\alpha_3 = 3$, $\alpha_4 = 4$, $\alpha_5 = 5$, $\alpha_6 = 6$, and the column multipliers are $v_1 = 2$, $v_2 = 2$, $v_3 = 3$, $v_4 = 3$, $v_5 = 4$, $v_6 = 4$.

Assume that $\mathbf{c} \in \mathbb{F}^6$ is transmitted, and $\mathbf{y} = (0, 1, 2, 5, 6, 3) \in \mathbb{F}^6$ is received. In this question, you will decode \mathbf{y} .

- (a) Find the syndrome polynomial S(x).
- (b) Find the error-locator and the error-evaluator polynomials by either Peterson-Gorenstein-Zierler method or by Euclid's algorithm.
- (c) What are the error locations and error values?
- (d) What is **c** if we assume that there were at most |(d-1)/2| errors?