Homework Assignment 3

Due date: November 19, 2018

It is possible to collect up to 110 points in this homework.

1. Show that in every linear code C over F_2, either all codewords have even Hamming weight or exactly half of the codewords have even Hamming weight.

 Hints:
 - Observe that the sum of two even-weight words over F_2 has even weight, the sum of two odd-weight words has even weight, and the sum of an even-weight word and an odd-weight word has odd weight.
 - Take some odd-weight word $\bar{c} \in C$ and consider all words $\bar{c} + \bar{x}$, where \bar{x} varies over all even-weight words in C.

2. Let $F = F_{2^4}$ be a field represented as a residue ring of the polynomials over F_2 modulo the polynomial $\beta^4 + \beta^3 + \beta^2 + \beta + 1$.

 (a) Express each element in F as a power of a primitive element $\beta + 1$ (present the results in the table similarly to the table that was shown in the class).\(^1\)

 (b) Compute in this field: $\beta^2 + \beta^4$, $\beta^2(\beta + 1)^3$, $(\beta^2 + 1)^{-1}$.

3. Let Φ be an extension field of F_3 of extension degree $s > 1$. Let $a(x)$ be a nonzero polynomial with the coefficients in F_3.

 (a) Show that if β is a root of the polynomial $a(x)$ over Φ, then $\{\beta^3, \beta^3^2, \beta^3^3, \beta^3^4, \cdots\}$ are all roots of $a(x)$ over Φ.

 (b) Show that if β is a primitive element in Φ, and β is a root of $a(x)$, then the degree of $a(x)$ is at least s.

4. Let C_1 be a linear $[n, k_1, d_1]$ code and C_2 be a linear $[n, k_2, d_2]$ code over the same field F.

 Define the code

 $$C_3 = \{ (\bar{c}_1 | \bar{c}_2) : \bar{c}_1 \in C_1 \text{ and } \bar{c}_2 \in C_2 \} .$$

 Show that C_3 is a linear $[2n, k, d]$ code over F, where $k = k_1 + k_2$ and $d = \min\{2d_1, d_2\}$.

\(^1\)Note that β is not a primitive element in this field.