Homework Assignment 5

Due date: December 5, 2016

It is possible to collect up to 110 points in this homework.

1. Let \(C \) be an \([n, k, 3]\) Reed-Solomon code, and \(H \) its parity-check matrix with code locators \(\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{F} \) and column multipliers \(v_1 = v_2 = \cdots = v_n = 1 \).

 (a) A codeword of \(C \) is transmitted through a channel with errors, and a word \(y \in \mathbb{F}^n \) is received with one error at location \(j \). Let \((s_0, s_1)^T \) be the syndrome of \(y \) with respect to \(H \). Show that
 \[\alpha_j = \frac{s_1}{s_0}, \]
 and that the error value is equal to \(s_0 \).

 (b) A codeword \(c = (c_1, c_2, \ldots, c_n) \in C \) is transmitted through an erasure channel, and a word \(y = (y_1, y_2, \ldots, y_n) \in (\mathbb{F} \cup \{\text{?}\})^n \) is received, where ‘?’ denotes an erasure. The word \(y \) contains two erasures, whose locations are denoted by \(i \) and \(j \).
 The syndrome of \(y \) is computed as in the first part where, for the purpose of this computation, 0 is substituted for \(y_i \) and \(y_j \). Show that the entries of \(c \) at the erased locations are given by
 \[c_i = \frac{s_1 - \alpha_j s_0}{\alpha_j - \alpha_i} \quad \text{and} \quad c_j = \frac{s_1 - \alpha_i s_0}{\alpha_i - \alpha_j}. \]

2. Alice communicates with Bob by using coset coding over \(\mathbb{F}_7 \). She wants to send a message \((s_1, s_2, s_3)\) securely. In order to do so, Alice picks a random solution \(\bar{x} = (x_1, x_2, x_3, x_4, x_5) \) of the system
 \[H \cdot \bar{x}^T = (s_1, s_2, s_3)^T, \]
 and sends it to Bob, where \(H \) is the following matrix
 \[H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2^2 & 3^2 & 4^2 & 5^2 \end{pmatrix}. \]

 (a) What are the parameters \(n, k \) and \(d \) of the code defined by \(H \), when used as a parity-check matrix? Prove.

 (b) How many different solutions \((x_1, x_2, x_3, x_4, x_5)\) can Alice choose from?

 (c) Assume that wiretapper Eve intercepts \(x_2 = 2 \) and \(x_5 = 5 \). Show that Eve does not know anything about the syndrome \((s_1, s_2, s_3)\) that was sent. In other words, show that from Eve’s point of view, any syndrome \((s_1, s_2, s_3)\) is possible.

 (d) Assume now that Eve intercepts \(x_1 = 1 \), in addition to \(x_2 = 2 \) and \(x_5 = 5 \). Show that now Eve has some knowledge about the syndrome \((s_1, s_2, s_3)\). Is this knowledge sufficient to determine \((s_1, s_2, s_3)\) in a unique way?
(e) Assume now that Eve intercepts $x_3 = 0$, in addition to $x_1 = 1$, $x_2 = 2$ and $x_5 = 5$. Is this knowledge sufficient to determine (s_1, s_2, s_3) in a unique way?

3. Consider Shamir’s secret sharing scheme over $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$ with $n = 4$ and $k = 4$. Let $\alpha_1 = 1$, $\alpha_2 = 2$, $\alpha_3 = 3$ and $\alpha_4 = 4$. Assume that the secret s is selected randomly and uniformly in \mathbb{F}_5. The user 1 knows that $P(\alpha_1) = 0$, the user 2 knows that $P(\alpha_2) = 1$, the user 3 knows that $P(\alpha_3) = 2$, and the user 4 knows that $P(\alpha_4) = 0$, where $P(x) = a_3 x^3 + a_2 x^2 + a_1 x + s$.

(a) Show that if the users 1, 2 and 3 try to find s, then any value of $s \in \mathbb{F}_5$ is equally probable.

(b) Show that the users 1, 2, 3 and 4 jointly can find s. What is the value of s?

4. For a polynomial $a(x) = \sum_{i=0}^{n} a_i x^i$ over a finite field \mathbb{F} define a formal derivative of $a(x)$ to be

$$a'(x) = \sum_{i=1}^{n} i \cdot a_i x^{i-1}.$$

Let $a(x)$ and $b(x)$ be two polynomials (of possibly different degrees) over \mathbb{F}, and $c \in \mathbb{F}$. Show that:

(a) $(a(x) + b(x))' = a'(x) + b'(x)$.

(b) $(c \cdot a(x))' = c \cdot a'(x)$.

(c) $(a(x) \cdot b(x))' = a(x) \cdot b'(x) + a'(x) \cdot b(x)$.

2