Chapter 12: Secure System Development

Raimundas Matulevičius
University of Tartu, Estonia, rma@ut.ee

Goal

• Explain main activities for secure software development
• Overview three approaches for secure software development
Outline

• Security system development processes
 – Microsoft secure system development lifecycle
 – OWASP CLASP
 – Seven touchpoints
 – Comparison

• Security Approaches in Secure Systems Development Processes

Emphasis on „building secure software” as opposed to „building security software”

– Comparison

• Security Approaches in Secure Systems Development Processes
Outline

- Security system development processes
 - Microsoft secure system development lifecycle
 - OWASP CLASP
 - Seven touchpoints
 - Comparison
- Security Approaches in Secure Systems Development Processes

Microsoft Security Development Cycle

- Core security training
- Establish design requirements
- Perform attack surface analysis/ reduction
- Use threat modelling
Microsoft Security Development Cycle

- Use approved tools
- Deprecate unsafe functions
- Perform static analysis

- Perform dynamic analysis
- Perform fuzz testing
- Conduct attack surface reviews
Microsoft Security Development Cycle

- Create an incident response plan
- Conduct final security review
- Certify release and archive

Microsoft Security Development Cycle

- Execute incidence response plan
Microsoft Security Development Cycle

- Provide training
- Define security requirements
- Define metrics and compliance reporting
- Perform threat modelling
- Establish design requirements
- Define and use cryptography standards
- Manage the security risk of using third part components
- Use approved tools
- Perform static analysis security testing (SAST)
- Perform dynamic analysis security testing (DAST)
- Perform penetration testing
- Establish a standard incident response process

Outline

- Security system development processes
 - Microsoft secure system development lifecycle
 - OWASP CLASP
 - Seven touchpoints
 - Comparison
- Security Approaches in Secure Systems Development Processes
Open Web Application Security Project

OWASP

https://www.owasp.org/index.php/Main_Page

• Collect resources for Web applications
 – Top ten security flaws
 – Various security testing tools
 – Various security control means
 • e.g., code review guide

OWASP Appsec Tutorial Series

https://www.owasp.org/index.php/OWASP_Appsec_Tutorial_Series

 – Basics
 – SQL Injection
 – Cross-site Scripting (XSS)
 – HTTP Strict Transport Security

• CLASP – Comprehensive Lightweight Application Security Process

CLASP

https://www.owasp.org/index.php/Main_Page

• Goal:
 – move security concerns into the early stages of the software development lifecycle, whenever possible

• Set of process pieces that can be integrated into any software development process
 – Introduction to the Concepts behind CLASP to get started
 – Seven key Best Practices
 – High-level Security Services (authorisation, authentication, …)
 – Core Security Principles
 – Roles
 – Activities
 – Process engineering and roadmaps
 – Checklisted Coding Guidelines
 – Vulnerabilities that occur in source code
 – Searchable Vulnerability Checklist
CLASP Best Practices

• Institute awareness programs
• Perform application assessments
• Capture security requirements
• Implement secure development practices
• Build vulnerability remediation procedures
• Define and monitor metrics
• Publish operational security guidelines

People should consider security to be an important project goal
• Train all team members
• Make people aware of security setting
• Institute accountability for security issues
• Appoint a project security officer
• Institute rewards for handling of security issues
CLASP Best Practices

- Institute awareness programs
- Perform application assessments
- Capture security requirements
- Implement secure development practices
- Build vulnerability remediation procedures
- Define and monitor metrics
- Publish operational security guidelines

- Security analysis of requirements and design
 - Threat modelling
- Source-level security review
- Security tests

© Springer International Publishing AG 2017
CLASP Best Practices

- Institute awareness programs
- Perform application assessments
- Capture security requirements
- **Implement secure development practices**
- Build vulnerability remediation procedures
- Define and monitor metrics
- Publish operational security guidelines

- Annotate classes with security properties
- Apply principles of secure design
- Manage resources
- Manage contracts and interfaces

© Springer International Publishing AG 2017
CLASP Best Practices

- Institute awareness programs
- Perform application assessments
- Capture security requirements
- Implement secure development practices
- Build vulnerability remediation procedures
 - Define and monitor metrics
 - Publish operational security guidelines

- Select metrics
- Collect data
- Evaluate results

CLASP Best Practices

- Institute awareness programs
- Perform application assessments
- Capture security requirements
- Implement secure development practices
- Build vulnerability remediation procedures
- Define and monitor metrics
- Publish operational security guidelines

- Build operational security guide
- Specify database security configuration
• Security system development processes
 – Microsoft secure system development lifecycle
 – OWASP CLASP
 – Seven touchpoints
 – Comparison
• Security Approaches in Secure Systems Development Processes

© Springer International Publishing AG 2017

Seven Security Touchpoints

“All software projects produce at least one artifact: source code”
Seven Security Touchpoints

“All software projects produce at least one artifact: source code”

1. Code review (tools) 5. Abuse analysis
2. Risk analysis 6. Security requirements
3. Penetration test 7. Security attacks
4. Risk-based security test * External analysis

Code review (tools)

- Aim: catching implementation bugs early
- Tool helps to achieve good code coverage
- Aim for good, not perfect
Risk analysis

- **Create description of architecture**
 - Start with one page
 - Forest-level view

- **Attack resistance**
 - Use checklists of known attacks
 - Example: Microsoft STRIDE
 - Spoofing, Tampering, Repudiation, Info disclosure, Denial of service, Elevation of privilege

- **Ambiguity analysis**
 - Discover new risks
 - Find unclear parts in how the system works
 - Trust, data sensitivity, threat models

- **Weakness analysis**
 - Impact of external software dependencies
 - Platform (hardware, OS)
 - Frameworks
 - Called services

Combine risks and consider business impact
Find solutions

Penetration test

- **Use the source**
 - Otherwise people send time on reverse-engineering system

- **Apply business priorities**
 - Logic flaw vs. XSS flaw
 - XSS is important if it contributes towards compromising business logic

- **Use in-house QA department**
 - They already know the system
 - Use tools and training to add security testing skills

- **Test more than once**

- **Incorporate the findings back into development**
Risk-based security test

• Test based on priorities
 – Architectural risks
 – Risks discovered during code review

• Test malicious input
 – Use fuzzing tool

Abuse analysis and Security requirement

• Security is not a set of features
• How system should react to illegitimate use
• Like use cases, but with malicious users
External analysis

• **Unfortunately**
 – Software architects, developers, and testers are largely unaware of the software security problems

• **Good news**
 – They acknowledge that security problems exists!

• **Bad news**
 – Barely begun to apply the security solutions

Outline

• Security system development processes
 – Microsoft secure system development lifecycle
 – OWASP CLASP
 – Seven touchpoints
 – **Comparison**

• Security Approaches in Secure Systems Development Processes
Comparison

SSDL
- Education and awareness
- Project inception and release
- Deployment and support activities

OWASP CLASP
- Project inception and release
- Deployment and support activities
- Analysis and requirements
- Architectural and detailed design activities

Seven Touchpoints
- Implementation and testing
 - e.g., three out of seven touchpoints are related to the testing activities.
- Analysis and requirements
- Architectural and detailed design

<table>
<thead>
<tr>
<th>Stages</th>
<th>SSDL</th>
<th>CLASP</th>
<th>Touchpoints</th>
</tr>
</thead>
</table>
| Education and awareness | 1. Baseline education and advanced education
2. Focus on awareness, knowledge of security engineering knowledge | 1. Baseline level and advanced education
2. Focus on all project roles
3. Emphasis on accountability
4. Tends to improve awareness by sharing all security artefacts | 1. No separate touchpoint, but recognises that people should be sufficiently trained
2. A knowledge management framework established to share security knowledge |

| Project inception | 1. Decision about the methodology, personnel, tools, and targeted security bugs | 1. Assignment of the security officer and determining influence of security on other development roles
2. Motivation plan by institutional accountability and by means of reward
3. Metric definition, collection and management
4. Organisational policy management | 1. Stress on the creation and continuous execution of an improvement program |

| Analysis and requirements | 1. Use scenarios as the means in threat modelling | 1. Identifies resources, trust boundaries, capabilities for resources and roles, and attack profiles
2. Uses threat modelling and requirements specification means
3. Deals with business requirements, functional security requirements, conflict resolution, etc. | 1. Touchpoint dedicated to threat modelling based on abuse cases
2. Extra security requirements identified based on laws and regulations, commercial considerations and contractual obligations |

| Architectural and detailed design | 1. Supports threat modelling
2. Focusses on operational environment
3. Assesses user privacy
4. Tends to reduce attack surface (by reduction of privileges) | 1. Supports threat modelling
2. Audits both security and non-security requirements
3. Focusses on reduction of access points
4. Annotates design models
5. Secures configuration of data bases | 1. Main focus on threat modelling
2. Includes threat identification and risk assessment
3. Tends to remove ambiguity |

| Implementation and testing | 1. Provides secure coding guidelines
2. Encourages both using automated tools for verification and manual code inspection
3. Focus on black box testing | 1. Emphasises on white box security testing
2. Includes implementation of interface contracts
3. Reviews specification from developers perspective | 1. Big emphasis on security testing - three (out of seven) touchpoints deal with testing
2. Stress on importance of risk-based testing
3. Emphasis on code review using automated tools |

| Release, deployment and support | 1. Focus on response plan (i.e., where, when vulnerability is determined) | 1. Requests stakeholder to sign the code, so to provide a way to validate the origin and integrity of the product | 1. Limited support in this activity (fine tuning access controls, configuring the monitoring and logging) |

[De Win et al., 2009]
Outline

- Security system development processes
 - Microsoft secure system development lifecycle
 - OWASP CLASP
 - Seven touchpoints
 - Comparison

Security Approaches in Secure Systems Development Processes

<table>
<thead>
<tr>
<th>Security approaches</th>
<th>SSDL</th>
<th>CLASP</th>
<th>Touchpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSRM</td>
<td>Requirements, Design</td>
<td>Assessing application, Capturing security requirements, Implementing secure development practices, Definition and monitoring of metrics</td>
<td>Risk analysis</td>
</tr>
<tr>
<td>STRIDE</td>
<td>Design</td>
<td>Capturing security requirements</td>
<td>Risk analysis</td>
</tr>
<tr>
<td>Threats for distributed systems</td>
<td>Design</td>
<td>Capturing security requirements</td>
<td>Risk analysis</td>
</tr>
<tr>
<td>Seven pernicious kingdoms</td>
<td>Design, Implementation</td>
<td>Building vulnerability remediation procedures</td>
<td>Code review, Security operations</td>
</tr>
<tr>
<td>Security Risk-oriented BPMN</td>
<td>Requirements</td>
<td>Capturing security requirements</td>
<td>Security requirements</td>
</tr>
<tr>
<td>Security Risk-aware Secure Tropos</td>
<td>Requirements, Design</td>
<td>Capturing security requirements</td>
<td>Abuse cases, Security requirements</td>
</tr>
<tr>
<td>Security Risk-oriented Misuse Cases</td>
<td>Design</td>
<td>Capturing security requirements</td>
<td>Abuse cases, Security requirements</td>
</tr>
<tr>
<td>Mal-activities for Security Management</td>
<td>Design</td>
<td>Capturing security requirements</td>
<td>Abuse cases, Security requirements</td>
</tr>
<tr>
<td>Secure model transformations</td>
<td>Requirements, Design</td>
<td>Implementing secure development procedures</td>
<td>Security requirements</td>
</tr>
<tr>
<td>RBAC</td>
<td>Design, Implementation</td>
<td>Implementing secure development procedures, Definition and monitoring of metrics</td>
<td>Security requirements, Security operations</td>
</tr>
<tr>
<td>SecureUML</td>
<td>Design, Implementation</td>
<td>Implementing secure development procedures</td>
<td>Security requirements, Security operations</td>
</tr>
<tr>
<td>UMLsec</td>
<td>Design, Implementation</td>
<td>Implementing secure development procedures</td>
<td>Security requirements, Security operations</td>
</tr>
<tr>
<td>Model-driven security</td>
<td>Design, Implementation</td>
<td>Implementing secure development procedures</td>
<td>Security requirements, Code review</td>
</tr>
<tr>
<td>Security patterns</td>
<td>Requirements, Design</td>
<td>Capturing security requirements, Implementing secure development practices</td>
<td>Security requirements, Abuse cases, Risk analysis, Security operations</td>
</tr>
<tr>
<td>SREBP</td>
<td>Requirements, Design</td>
<td>Capturing security requirements, Implementing secure development practices</td>
<td>Security requirements, Abuse cases, Risk analysis</td>
</tr>
</tbody>
</table>
Message to take home

- Emphasis on „building secure software” as opposed to „building security software”

- Major methodologies
 - Microsoft’s Security Development Lifecycle
 - OWASP CLASP
 - Cigital’s Security Touchpoints

Final slide

- Don't do anything just because somebody else does
- Apply the scientific method
 - „a method of procedure that has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.”

http://oxforddictionaries.com/