Principles of Secure Software Design

Course introduction

Prof. Dr. Raimundas Matulevičius

University of Tartu
email: rma@ut.ee
Raimundas Matulevičius, PhD, Professor

- Since February 2019: Professor of Information Security at the University of Tartu, Estonia
- Visiting Professor at RTU, Riga, Latvia
- Visiting Professor at VU and VMU, Lithuania

My research interests:
- Elicitation of Security Requirements
- Model driven security engineering
- Privacy by design solutions
On successful completion of this course

- Identify causes and consequences of (lack of) system and software security

- Master essential techniques to reduce and avoid system and software security problems, to introduce and reason on security requirements and controls

- Apply advanced modelling techniques (notations, tools, and processes) to build secure systems and software
Previous Year Feedback

- Focus on the assignments and practice session.
- Having exercises after every class (almost every) cemented the implementation of models and reinforced the notes presented in the lecture.

- It is an awesome course, if you pay attention and work every week.
- The amount of independent work was quite a lot. It took about 6 hours per week to do properly. But it had to be done to learn about the topic.

- This course killed all my two days every week during the semester.
- This course will destroy most of your free time in second semester and at the end don't expect to get good grade. Just be happy that you will pass this course.
Practical usefulness

• I did not achieve anything useful. Models we learned there have no useful outcome in my profession as Cyber Security professional.

• Topics that where covered in his course are useless - by my 15 years IT field working experience.

• Stop teaching stuff that no one is using and focus more on the modeling languages actually in use in corporations, that is what the students need.

• <...>
Practical usefulness

On 19 Apr 2017 ...

I am currently doing my traineeship in **European Central Bank** and I was appointed into the Architecture department of the **Security and Architecture Division**. At the beginning of your course, while finding the topic of modelling interesting, I thought that the real world applications would be non-substantial. While being here I have been immersed into the work of high level system architects and knowledge gained in your course has made getting on track here a lot easier as a lot of the work evolves modelling using **ARIS** approach. The topic has started to intrigue me … <...>
Practical usefulness

On 8 Jun 2018, at ...

I would like to thank you for the course. I found it helpful, and now I am looking forward to finding the application for learned modeling techniques not only in the System Security domain. One of the biggest discoveries was also the **UML Class Diagram**. Seems like pretty generic and trivial thing to know, but I wasn't familiar with it before. **Now it helps me in the work.**

You did also a good job in structuring the material. The course became challenging closer to the end, and the learning curve was quite organic. <...>
Institute of Computer Science Cyber Security alumnus Ilhan Çelebi won the Swedbank employees' technical thesis award for his work on privacy modelling language for GDPR compliance. <…>

21.09.2018

About the Course

- **Course material** <https://courses.cs.ut.ee/2019/ssd/>
  - **Lectures**
    - Links to slides and videos
  - **Practicals**
    - Tests, exercises, and workshop
  - **Readings**
    - Self-study material
    - Articles and other readings
<table>
<thead>
<tr>
<th></th>
<th>Course outline / Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction, ISSRM domain model</td>
</tr>
<tr>
<td>2</td>
<td>Security risk, Security requirements, Metrics</td>
</tr>
<tr>
<td>3</td>
<td>Practicals 1 (test and exercises)</td>
</tr>
<tr>
<td>4</td>
<td>Security modelling: Securing business processes, Secure goals</td>
</tr>
<tr>
<td>5</td>
<td>Practicals 2 (test and exercises)</td>
</tr>
<tr>
<td>6</td>
<td>Security modelling: Securing System Functions and behaviour</td>
</tr>
<tr>
<td>7</td>
<td>Privacy modelling</td>
</tr>
<tr>
<td>8</td>
<td>Workshop (day one)</td>
</tr>
<tr>
<td>9</td>
<td>Workshop (day two)</td>
</tr>
<tr>
<td>10</td>
<td>Access control</td>
</tr>
<tr>
<td>11</td>
<td>Practicals 3 (test and exercises)</td>
</tr>
<tr>
<td>12</td>
<td>Security patterns</td>
</tr>
<tr>
<td>13</td>
<td>Practicals 4 (test and exercises)</td>
</tr>
<tr>
<td>14</td>
<td>Guest lectures</td>
</tr>
<tr>
<td>15</td>
<td>Secure system development approaches, Summary</td>
</tr>
</tbody>
</table>

Changes are possible!
Available at


- Chapter presentations
  - pdf and videos
- Exercises

Password: book
Modalities and Assessment

• **Practicals** – 40% of the final grade
  – Tests and Exercises
  – Submitted either during lecture or on Mondays next week

• **Workshop** – 20% of the final grade
  – Prepared in teams (4 people)

• **Exam** – 40% of the final grade
  – Closed book
  – Examples of exam tasks could be found at [https://courses.cs.ut.ee/2018/ssd/spring/Main/Exam](https://courses.cs.ut.ee/2018/ssd/spring/Main/Exam)
Modalities and Assessment

- **Practicals** – 40% of the final grade
  - Tests and Exercises
  - Submitted either during lecture or on Mondays next week
  - Late submissions will be assessed with 50% grade penalty

- **Workshop** – 20% of the final grade
  - Prepared in teams (4 people)

To be admitted to the exam, at least 30% of grade from the practical assignments need to be collected during the semester

- **Exam** – 40% of the final grade
  - Closed book
  - Examples of exam tasks could be found at [https://courses.cs.ut.ee/2018/ssd/spring/Main/Exam](https://courses.cs.ut.ee/2018/ssd/spring/Main/Exam)