Document important information elicited or developed when performing a core the RE activity
• *i.e.*, documentation, elicitation, negotiation, validation and/or management
"Requirements Lifecycle"

Source: Adapted from Pohl, CAISE 1993
Requirements Specification

• What is Requirements Specification?
Requirements Specification

→ How do we communicate the Requirements to others?
 ✧ It is common practice to capture them in a specification
 ➢ But an specification does not need to be a single paper document...

→ Purpose
 ✧ Communication
 ➢ explains the application domain and the system to be developed
 ✧ Contractual
 ➢ May be legally binding!
 ➢ Expresses agreement and a commitment
 ✧ Baseline for evaluating the software
 ➢ supports testing, V&V
 ➢ “enough information to verify whether delivered system meets requirements”
 ✧ Baseline for change control

→ Audience
 ✧ Customers & Users
 ➢ interested in system requirements…
 ➢ …but not detailed software requirements
 ✧ Systems (Requirements) Analysts
 ➢ Write other specifications that inter-relate
 ✧ Developers, Programmers
 ➢ Have to implement the requirements
 ✧ Testers
 ➢ Have to check that the requirements have been met
 ✧ Project Managers
 ➢ Have to measure and control the project
Appropriate Specification

A) Tiny project, 1 programmer, 2 months work
programmer talks to customer, then writes up a 2-page memo

<table>
<thead>
<tr>
<th>Purpose of spec?</th>
<th>Project A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystalizes programmer’s understanding; feedback to customer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management view?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spec is irrelevant; have already allocated resources</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Readers?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary: Spec author; Secondary: Customer</td>
</tr>
</tbody>
</table>
Appropriate Specification

B) Large project, 50 programmers, 2 years work

- team of analysts model the requirements, then document them in a 500-page document

<table>
<thead>
<tr>
<th>Purpose of spec?</th>
<th>Project B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Build-to document; must contain enough detail for all the programmers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management view?</th>
<th>Will use the spec to estimate resource needs and plan the development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary: programmers, testers, managers; Secondary: customers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Readers?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- programmer talks to customer, then writes up a 2-page memo
Procurement

→ A requirements specification may be written by...

- **the procurer:**
 - specification is really a call for proposals
 - Must be general enough to yield a good selection of bids...
 - …and specific enough to exclude unreasonable bids

- **the bidders:**
 - specification is a proposal to implement a system to meet the CfP
 - must be specific enough to demonstrate feasibility and technical competence
 - …and general enough to avoid over-commitment

- **the selected developer:**
 - reflects the developer’s understanding of the customer’s needs
 - forms the basis for evaluation of contractual performance

- **...or by an independent RE contractor!**

→ Choice over what point to compete the contract

- **Early (conceptual stage)**
 - can only evaluate bids on apparent competence & ability

- **Late (detailed specification stage)**
 - more work for procurer; appropriate RE expertise may not be available in-house
Specification Contents

Specification should address:

- **Functionality**
 - What is the software supposed to do?

- **External interfaces**
 - How does the software interact with people, the system's hardware, other hardware, and other software?
 - What assumptions can be made about these external entities?

- **Performance**
 - What is the speed, availability, response time, recovery time of various software functions, and so on?

- **Attributes**
 - What are the portability, correctness, maintainability, security, and other considerations?

- **Design constraints imposed on an implementation**
 - Are there any required standards in effect, implementation language, policies for database integrity, resource limits, operating environment(s) and so on?
Specification should not include…

→ **Project development plans**
 - E.g. cost, staffing, schedules, methods, tools, etc
 - Lifetime of SRS is until the software is made obsolete
 - Lifetime of development plans is much shorter

→ **Product assurance plans**
 - V&V, test, QA, etc
 - Different audiences
 - Different lifetimes

→ **Designs**
 - Requirements and designs have different audiences
 - Analysis and design are different areas of expertise
 - I.e. requirements analysts shouldn’t do design!
1 Introduction
- **Purpose**
- **Scope**
- Definitions, acronyms, abbreviations
- Reference documents
- Overview

2 Overall Description
- Product perspective
- Product functions
- User characteristics
- Constraints
- Assumptions and Dependencies

3 Specific Requirements

Appendices

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>Identifies the product, & application domain</td>
</tr>
<tr>
<td></td>
<td>Describes contents and structure of the remainder of the SRS</td>
</tr>
<tr>
<td></td>
<td>Describes all external interfaces: system, user, hardware, software; also operations and site adaptation, and hardware constraints</td>
</tr>
<tr>
<td></td>
<td>Summary of major functions, e.g. use cases</td>
</tr>
<tr>
<td></td>
<td>Anything that will limit the developer’s options (e.g. regulations, reliability, criticality, hardware limitations, parallelism, etc)</td>
</tr>
<tr>
<td></td>
<td>All the requirements go in here (i.e. this is the body of the document). IEEE STD provides 8 different templates for this section</td>
</tr>
</tbody>
</table>
IEEE STD Section 3 (example)

3.1 External Interface Requirements
 3.1.1 User Interfaces
 3.1.2 Hardware Interfaces
 3.1.3 Software Interfaces
 3.1.4 Communication Interfaces

3.2 Functional Requirements
 this section organised by mode, user class, feature, etc. For example:
 3.2.1 Mode 1
 3.2.1.1 Functional Requirement 1.1
 ...
 3.2.2 Mode 2
 3.2.1.1 Functional Requirement 1.1
 ...
 3.2.2 Mode n
 ...

3.3 Performance Requirements
 Remember to state this in measurable terms!

3.4 Design Constraints
 3.4.1 Standards compliance
 3.4.2 Hardware limitations
 etc.

3.5 Software System Attributes
 3.5.1 Reliability
 3.5.2 Availability
 3.5.3 Security
 3.5.4 Maintainability
 3.5.5 Portability

3.6 Other Requirements
Organizing the Requirements

→ Example Structures - organize by…

- **External stimulus or external situation**
 - e.g., for an aircraft landing system, each different type of landing situation: wind gusts, no fuel, short runway, etc

- **System feature**
 - e.g., for a telephone system: call forwarding, call blocking, conference call, etc

- **System response**
 - e.g., for a payroll system: generate pay-cheques, report costs, print tax info;

- **External object**
 - e.g. for a library information system, organize by book type

- **User type**
 - e.g. for a project support system: manager, technical staff, administrator, etc.

- **Mode**
 - e.g. for word processor: page layout mode, outline mode, text editing mode, etc

- **Subsystem**
 - e.g. for spacecraft: command&control, data handling, comms, instruments, etc.

→ Requirements documents templates

https://www.volere.org/templates/volare-requirements-specification-template/
Documenting requirements artefacts

- Identifier
- Description
- Requirements artefact
 - Goal
 - Solution-oriented requirement
 - Scenario
 - contributes to realisation of
 - derived from
 - example of satisfaction
 - has
 - Criticality
 - Priority
 - Risk
 - {complete, disjoint}

1..* has

1

1..*
Requirement Shell

Volere template, 2010

<table>
<thead>
<tr>
<th>Requirement # : Unique id</th>
<th>Requirement Type</th>
<th>Event/use case # :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description : A one sentence statement of the intention of the requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationale : A justification of the requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originator : Who raised this requirement?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit Criterion : A measurement of the requirement such that it is possible to test if the solution matches the original requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Satisfaction :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priority : The relative urgency of this requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting Materials : Pointer to documents that illustrate and explain this requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History : Creation, changes, deletions, etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of stakeholder happiness if this requirement is successfully implemented.

Scale from 1 = uninterested to 5 = extremely pleased.

Measure of stakeholder unhappiness if this requirement is not part of the final product.

Scale from 1 = hardly matters to 5 = extremely displeased.

The type from the template

List of events/use cases that need this requirement
Things to Take Home

- Requirements specification
- Criteria for good requirements