Achieve progress in the **specification dimension** by eliciting new requirements as well as detailed information about existing requirements

- Elicit all requirements at the level of detail for the system to be developed
Table of Contents

- Where do we start?
- Stakeholders
- Requirements elicitation technique

Source:
- Prof. Steve Easterbrook, Requirements engineering course, University of Toronto
Table of Contents

- Where do we start?
 - Stakeholders
 - Requirements elicitation techniques

- Prof. Steve Easterbrook, Requirements engineering course, University of Toronto

Requirements Elicitation

Starting point
- Some notion that there is a “problem” that needs solving
 - e.g. dissatisfaction with the current state of affairs
 - e.g. a new business opportunity
 - e.g. a potential saving of cost, time, resource usage, etc.

- A requirements analyst is an agent of change
Requirements Elicitation

The requirements analyst must:

- identify the “problem”/“opportunity”
 - Which problem needs to be solved? (identify problem Boundaries)
 - Where is the problem? (understand the Context/Problem Domain)
 - Whose problem is it? (identify Stakeholders)
 - Why does it need solving? (identify the stakeholders’ Goals)
 - How might a software system help? (collect some Scenarios)
 - When does it need solving? (identify Development Constraints)
 - What might prevent us solving it? (identify Feasibility and Risk)

- and become an expert in the problem domain
 - although ignorance is important too -- “the intelligent ignoramus”

Where do we start?

- **Identify the problem**
 - what is the objective of the project?
 - the “vision” of those who are pushing for it?
 - e.g., “Meeting scheduling is too costly right now”

- **Scope the problem**
 - given the vision, how much do we tackle?
 - e.g., “Build a system that schedules meetings”, …or…
 - e.g., “Build a system that maintains people’s calendars” …or…

- **Identify solution scenarios**
 - given the problem, what is the appropriate business process for solving it?
 - e.g., “Anyone who wants to schedule a meeting goes to the secretary, gives details and the secretary handles the rest”, …or…

- **Scope the solution**
 - Given a business process, what parts should be automated, and how?
 - e.g., “Computer takes in scheduling request details, outputs a solution” …or…
 - e.g., “Solution arrived at interactively by secretary and computer” …or…
Identifying the Problem

• Vague problem stated by the customer:
 – E.g. university textbook store:
 • Manager wants to computerize the book order forms filled out by instructors;
 – E.g. A large insurance company:
 • Claims manager wants to cut down the average time it takes to process an insurance claim from 2 months to 2 weeks
 – E.g. A telecommunications company:
 • CIO wants to integrate the billing system with customer record systems of several affiliates, so there is only one billing system...
 – E.g. Large Government Aerospace Agency:
 • The president wants to send a manned mission to Mars by the the year 2020

• Often you only see symptoms rather than causes:
 – E.g. “Ontario patients needing X-ray scans have to wait for months”

British Planes
https://en.wikipedia.org/wiki/Abraham_Wald

Credit: CameronMoll
British Planes

https://en.wikipedia.org/wiki/Abraham_Wald

• The holes in the returning aircraft represent areas where a bomber could take damage and still return home safely
• The Navy should reinforce the areas where the returning aircraft were unscathed, since those were the areas that, if hit, would cause the plane to be lost

Abraham Wald
1902-1950

Difficulties of Elicitation

• Thin spread of domain knowledge
 – The knowledge might be distributed across many sources
 • It is rarely available in an explicit form (i.e. not written down)
 – There will be conflicts between knowledge from different sources
 • Remember the principle of complementarity!
• Tacit knowledge (The “say-do” problem)
 – People find it hard to describe knowledge they regularly use
• Limited Observability
 – The problem owners might be too busy coping with the current system
 – Presence of an observer may change the problem
 • E.g. Probe Effect; Hawthorne Effect
• Bias
 – People may not be free to tell you what you need to know
 – People may not want to tell you what you need to know
 • The outcome will affect them, so they may try to influence you (hidden agendas)
Example

- **Loan approval department in a large bank**
 - The analyst is trying to elicit the rules and procedures for approving a loan

- **Why this might be difficult:**
 - *Implicit knowledge*:
 - There is no document in which the rules for approving loans are written down
 - *Conflicting information*:
 - Different bank staff have different ideas about what the rules are
 - *Say-do problem*:
 - The loan approval process described to you by the loan approval officers is quite different from your observations of what they actually do
 - *Probe effect*:
 - The loan approval process used by the officers while you are observing is different from the one they normally use
 - *Bias*:
 - The loan approval officers fear that your job is to computerize their jobs out of existence, so they are deliberately emphasizing the need for case-by-case discretion (to convince you it has to be done by a human!)

Bias

- **What is bias?**
 - Bias only exists in relation to some reference point
 - can there ever be "no bias"?
 - All views of reality are filtered
 - All decision making is based partly on personal values

- **Types of bias:**
 - *Motivational bias*:
 - expert makes accommodations to please the interviewer or some other audience
 - *Observational bias*:
 - Limitations on our ability to accurately observe the world
 - *Cognitive bias*:
 - Mistakes in use of statistics, estimation, memory, etc.
 - *Notational bias*:
 - Terms used to describe a problem may affect our understanding of it

Examples of Bias

- Social pressure
 - response to verbal and non-verbal cues from interviewer
- Group think
 - response to reactions of other experts
- Impression management
 - response to imagined reactions of managers, clients...
- Wishful thinking
 - response to hopes or possible gains.
- Appropriation
 - Selective interpretation to support current beliefs.
- Misrepresentation
 - expert cannot accurately fit a response into the requested response mode
- Anchoring
 - contradictory data ignored once initial solution is available
- Inconsistency
 - assumptions made earlier are forgotten
- Availability
 - some data are easier to recall than others
- Underestimation of uncertainty
 - tendency to underestimate by a factor of 2 or 3.
Table of Contents

- Where do we start?
- **Stakeholders**
- Requirements elicitation techniques

- Prof. Steve Easterbrook, Requirements engineering course, University of Toronto
Stakeholders

- **Stakeholder analysis:**
 - Identify all the people who must be consulted during information acquisition

- **Example stakeholders**
 - Users
 - concerned with the features and functionality of the new system
 - Designers
 - want to build a perfect system, or reuse existing code
 - Systems analysts
 - want to “get the requirements right”
 - Training and user support staff
 - want to make sure the new system is usable and manageable
 - Business analysts
 - want to make sure “we are doing better than the competition”
 - Technical authors
 - will prepare user manuals and other documentation for the new system
 - The project manager
 - wants to complete the project on time, within budget, with all objectives met.
 - “The customer”
 - Wants to get best value for money invested!

Requirements Elicitation

The project requirements are forming in my mind.

Now they're changing... changing... changing... okay, no, wait... changing... done.

Naturally, I won't be sharing any of these thoughts with engineering.

I budgeted for some goons to beat it out of you.
Table of Contents

• Where do we start?
• Stakeholders

• Requirements elicitation techniques
 – Background reading
 – Hard data analysis
 – Interviews
 – Questionnaire
 – Meetings
 – Group elicitation techniques
 – Participant observation

• Prof. Steve Easterbrook, Requirements engineering course, University of Toronto

Elicitation Techniques

• Traditional techniques
 – Reading existing documents
 – Analyzing hard data
 – Interviews
 • Open-ended
 • Structured
 – Surveys / Questionnaires
 – Meetings

• Collaborative techniques
 – Focus Groups
 • Brainstorming
 • JAD/RAD workshops
 – Prototyping
 – Participatory Design

• Contextual (social) approaches
 – Ethnographic techniques
 • Participant Observation
 • Ethnomethodology
 – Discourse Analysis
 • Conversation Analysis
 • Speech Act Analysis
 – Sociotechnical Methods
 • Soft Systems Analysis

• Cognitive techniques
 – Task analysis
 – Protocol analysis
 – Knowledge Acquisition Techniques
 • Card Sorting
 • Laddering
 • Repertory Grids
 • Proximity Scaling Techniques
Background Reading

• **Sources of information:**
 – company reports, organization charts, policy manuals, job descriptions, reports, documentation of existing systems, etc.

• **Advantages:**
 – Helps the analyst to get an understanding of the organization before meeting the people who work there
 – Helps to prepare for other types of fact finding
 • e.g. by being aware of the business objectives of the organization.
 – may provide detailed requirements for the current system

• **Disadvantages:**
 – written documents often do not match up to reality
 – Can be long-winded with much irrelevant detail

• **Appropriate for**
 – Whenever you not familiar with the organization being investigated

“Hard Data” and Sampling

• **Hard data includes facts and figures...**
 – Forms, Invoices, financial information,...
 – Reports used for decision making,...
 – Survey results, marketing data,...

• **Sampling**
 – Sampling used to select representative set from a population
 • Purposive Sampling - choose the parts you think are relevant without worrying about statistical issues
 • Simple Random Sampling - choose every kth element
 • Stratified Random Sampling - identify strata and sample each
 • Clustered Random Sampling - choose a representative subpopulation and sample it
 – Sample Size is important
 • balance between cost of data collection/analysis and required significance

• **Process:**
 – Decide what data should be collected - e.g. banking transactions
 – Determine the population - e.g. all transactions at 5 branches over one week
 – Choose type of sample - e.g. simple random sampling
 – Choose sample size - e.g. every 20th transaction
Example of hard data

• Questions:
 – What does this data tell you?
 – What would you do with this data?

Interviews

• Types:
 – Structured - agenda of fairly open questions
 – Open-ended - no pre-set agenda

• Advantages
 – Rich collection of information
 – Good for uncovering opinions, feelings, goals, as well as hard facts
 – Can probe in depth, & adapt follow-up questions to what the person tells you

• Disadvantages
 – Large amount of qualitative data can be hard to analyze
 – Hard to compare different respondents
 – Interviewing is a difficult skill to master
Interviewing Tips

• **Starting off…**
 – Begin the interview with an innocuous topic to set people at ease
 • e.g. the weather, the score in last night’s hockey game
 • e.g. comment on an object on the person’s desk: “My… what a beautiful photograph! Did you take that?”

• **Ask if you can record the interview**
 – Make sure the tape recorder is visible
 – Say that they can turn it off at any time.

• **Ask easy questions first**
 – perhaps personal information
 • e.g. “How long have you worked in your present position?”

• **Follow up interesting leads**
 – e.g. if you hear something that indicates your plan of action may be wrong,
 • e.g., “Could we pursue what you just said a little further?”

• **Ask open-ended questions towards the end**
 • e.g. “Is there anything else you would like to add?”

Questionnaires

• **Advantages**
 – Can quickly collect info from large numbers of people
 – Can be administered remotely
 – Can collect attitudes, beliefs, characteristics

• **Disadvantages**
 – Simplistic (presupposed) categories provide very little context
 • No room for users to convey their real needs

• **Watch for:**
 – Bias in sample selection
 – Bias in self-selecting respondents
 – Small sample size (lack of statistical significance)
 – Open ended questions (very hard to analyze!)
 – Leading questions (“have you stopped beating your wife?”)
 – Appropriation (“What is this a picture of?”)
 – Ambiguous questions (i.e. not everyone is answering the same question)

Source: Adapted from Gregoire and Linda, 1993, p.154

Note: Questionnaires MUST be prototyped and tested!
Meetings

• **Used for summarization and feedback**
 - E.g. meet with stakeholders towards the end of each stage:
 • to discuss the results of the information gathering stage
 • to conclude on a set of requirements
 • to agree on a design etc.
 - Use the meeting to confirm what has been learned, talk about findings

• **Meetings are an important managerial tool**
 - Used to move a project forward.
 - Every meeting should have a clear objective:
 • E.g. presentation, problem solving, conflict resolution, progress analysis, gathering and merging of facts, training, planning,...
 - Plan the meeting carefully:
 • Schedule the meeting and arrange for facilities
 • Prepare an agenda and distribute it well in advance
 • Keep track of time and agenda during the meeting
 • Follow up with a written summary to be distributed to meeting participants
 • Special rules apply for formal presentations, walkthroughs, brainstorming, etc.

Group Elicitation Techniques

• **Types:**
 - Focus Groups
 - Brainstorming

• **Advantages**
 - More natural interaction between people than formal interview
 - Can gauge reaction to stimulus materials (e.g. mock-ups, storyboards, etc.)

• **Disadvantages**
 - May create unnatural groups (uncomfortable for participants)
 - Danger of Groupthink
 - May only provide superficial responses to technical questions
 - Requires a highly trained facilitator

• **Watch for**
 - sample bias
 - dominance and submission
Joint/Rapid Application Development

- **JAD & RAD Principles:**
 - Group Dynamics - use workshops instead of interviews
 - Visual Aids
 - Lots of visualization media, e.g. wall charts, large monitors, graphical interfaces
 - Organized, Rational Process
 - Techniques such as brainstorming and top-down analysis
 - WYSIWYG Documentation Approach
 - Each JAD session results in a document which is easy to understand and is created and agreed upon during the session

- **Notes:**
 - Choose workshop participants carefully
 - They should be the best people possible representing various stakeholder groups
 - Workshop should last 3-5 days.
 - Must turn a group of participants into a team - this takes 1-2 days.
 - Session leader makes sure each step has been completed thoroughly.
 - Session leader steps in when there are differences of opinion - "open issues".
 - Meeting room should be well-equipped for presentations, recording etc.

Participant Observation

- **Approach**
 - Observer spends time with the subjects
 - Joining in long enough to become a member of the group
 - Hence appropriate for longitudinal studies

- **Advantages**
 - Contextualized;
 - Reveals details that other methods cannot

- **Disadvantages**
 - Extremely time consuming!
 - Resulting "rich picture" is hard to analyze
 - Cannot say much about the results of proposed changes

- **Watch for**
 - Going native!
Suitability of the Techniques for Sub-activities

<table>
<thead>
<tr>
<th>Technique</th>
<th>Effort</th>
<th>Identifying requirements sources</th>
<th>Eliciting existing requirements</th>
<th>Developing new and innovating requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interview</td>
<td>Medium to high</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Workshop</td>
<td>High to very high</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Focus groups</td>
<td>Medium to high</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Observation</td>
<td>High to very high</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Questionnaire</td>
<td>Low to medium</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Perspective-based reading</td>
<td>Medium to high</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Combine Different Techniques

- Background reading (e.g., Internet?)
- (Initial) Meeting
- Hard Data analysis
- Interviews
- Brainstorming
- Meeting
- Joint/Rapid Development
- Meeting
- …
Elicitation technique Selection: How do experts do it

- Collaborative Sessions
 - Such as joint application development, brainstorming, group sessions
- Interviewing
- Team-building
- Ethnography
- Issue list
- Models
- Questionnaire
- Data gathering from existing systems
- Requirements categorization
- Conflict awareness and resolution
- Prototyping
- Role playing
- Formal methods
- Extreme programming

Document elicited knowledge!
Take Home!

- Where do we start?
- Stakeholders
- Requirements elicitation techniques
 - Background reading
 - Hard data analysis
 - Interviews
 - Questionnaire
 - Meetings
 - Group elicitation techniques
 - Participant observation