Travelling Salesman Problem

Basic algorithm

Definition 1 A Hamiltonian cycle in a graph is a simple circuit that passes through each vertex exactly once.

Problem. Let $G(V,E)$ be a complete undirected graph, and $c : E \mapsto \mathbb{R}^+$ be a cost function defined on the edges. Find a minimum cost Hamiltonian cycle in G.

This problem is called a travelling salesman problem. To illustrate the motivation, imagine that a salesman has a list of towns it should visit (and at the end to return to his home city), and a map, where there is a certain distance between any two towns. The salesman wants to minimize the total distance traveled.

Definition 2 We say that the cost function defined on the edges satisfies a triangle inequality if for any three edges $\{u,v\}$, $\{u,w\}$ and $\{v,w\}$ in E it holds:

$$c(\{u,v\}) + c(\{v,w\}) \geq c(\{u,w\}) .$$

In what follows we assume that the cost function c satisfies the triangle inequality.

The main idea of the algorithm:

Observe that removing an edge from the optimal travelling salesman tour leaves a path through all vertices, which contains a spanning tree.

We have the following relations:

$$\text{cost(TSP)} \geq \text{cost(Hamiltonian path without an edge)} \geq \text{cost(MST)} .$$

1 Additional reading: Section 3 in the book of V.V. Vazirani “Approximation Algorithms”.
Next, we describe how to build a travelling salesman path. Find a minimum spanning tree in the graph. Then by using the edges of the tree in both directions will result in a (not necessarily simple) circuit that passes through all vertices, possibly some vertices are visited more than once. This path has a total cost equal to $2 \cdot \text{cost}(\text{MST})$.

If some town is visited more than once, we can modify a path such that will skip the town that was already visited. For example, if Tartu was already visited, we replace the part of the path Tallinn → Tartu → Riga by a direct link Tallinn → Riga:

Due to a triangle inequality,

$$c(e_1) + c(e_2) \geq c(e_3),$$

this procedure can only reduce the total cost of the path. Therefore,

$$\text{cost(solution)} \leq 2 \cdot \text{cost}(\text{MST}) \leq 2 \cdot \text{cost(OPT)}.$$

We obtain an approximation algorithm with approximation factor 2.

Improved algorithm

Another view on the previous solution.

1. Find an MST;
2. Double every edge of MST to obtain an Eulerian graph (the degree of every vertex is even);
3. Find an Eulerian path in that graph (the path that uses every edge once);
4. Output the tour that visits vertices of G in the order of their appearance.
Reminder: An undirected graph $G(V, E)$ has an Eulerian cycle if and only if all of its vertices have even degrees.

Algorithm

1. Find T, an MST in G;
2. Compute a minimum cost perfect matching M in a subgraph induced by the odd-degree vertices in T;
3. Find an Eulerian cycle in $T \cup M$;
4. Output the tour that visits the vertices of G in the order of their appearance in the Eulerian cycle.

Lemma 1 Let $V' \subseteq V$ such that $|V'|$ is even. Let M be a minimum cost perfect matching of the subgraph induced by the vertices of V'. Then $\text{cost}(M) \leq \frac{\text{OPT}}{2}$.

Proof. Consider an optimal travelling salesman tour of G, τ. Let τ' be a tour of a subgraph induced by V', obtained by short-cutting τ. By the triangle inequality,

$$\text{cost}(\tau') \leq \text{cost}(\tau).$$

Observe that τ' is the union of two perfect matchings of V', each matching consists of alternate edges of τ'. Thus, one of these two matching, which has the lower cost, has cost

$$\text{cost}(M) \leq \frac{\text{cost}(\tau')}{2} \leq \frac{\text{OPT}}{2}.$$

Theorem 2 The approximation factor of the proposed algorithm is $3/2$.

Proof.

$$\text{cost(solution)} = \text{cost}(T) + \text{cost}(M) \leq \text{OPT} + \frac{\text{OPT}}{2} = \frac{3}{2} \cdot \text{OPT}.$$

TSP in directed graphs

Let $G(V, E)$ be a simple complete directed graph. Assume the triangle inequality

$$c((u, v)) + c((v, w)) \geq c((u, w)).$$

for any $u, v, w \in V$.

Goal: find a cyclic path that visits each vertex once. The previous approach does not work because the graph is not symmetric anymore.

Definition 3 A vertex-disjoint cycle cover is a collection of simple circuits such that every vertex in V participates in exactly one such circuit (simple circuits of length 2 are allowed). Note: a vertex-disjoint cycle cover can be found in a polynomial time.
A cycle-shrinking algorithm

Input: $\mathcal{G}(V, E), c : E \mapsto \mathbb{R}^+$.

Output: Hamiltonian cycle in \mathcal{G} with the minimum cost.

1. Find a minimum cost vertex-disjoint cycle cover;
2. Pick a representing vertex for each cycle;
3. Recursively solve the problem on representatives of each cycle;
4. Extend the Hamiltonian cycle using smaller cycles.

Example:

![Graph Example](image)

Theorem 3 Let $\{\mathcal{C}_1, \mathcal{C}_2, \cdots, \mathcal{C}_k\}$ be a collection of vertex-disjoint cycle covers, where \mathcal{C}_i is the i-th cycle cover found by the algorithm. Let $c(\mathcal{C}_i)$ be the cost of \mathcal{C}_i. Then, the following holds:

Claim 1: $c(\mathcal{C}_i) \leq \text{OPT}$;

Claim 2: $k \leq \log_2 n$.

Proof:

Claim 1: Let \mathcal{V}_i be a set of representatives in the level i of recursion, and \mathcal{G}_i be a graph induced from \mathcal{G} by \mathcal{V}_i. Then,

$$\text{OPT}(\mathcal{G}_i) \leq \text{OPT}(\mathcal{G}),$$

where $\text{OPT}(\mathcal{G}_i)$ and $\text{OPT}(\mathcal{G})$ denote the cost of the optimal Hamiltonian cycle in \mathcal{G}_i and \mathcal{G}, respectively. This can be shown by short-cutting the Hamiltonian walk on \mathcal{G} so it passes through the vertices in \mathcal{V}_i only.
Let W_i be the optimal Hamiltonian walk in G short-cutted to G_i. Then, $c(C_i) \leq c(W_i) = \text{OPT}(G_i)$, because Hamiltonian walk is a cycle cover. Then,

$$c(C_i) \leq c(W_i) \leq \text{OPT}(G) ,$$

which proves Claim 1.

Claim 2: at most half of the vertices survive till the next stage. Thus,

$$|\mathcal{V}_{i+1}| \leq \frac{1}{2} \cdot |\mathcal{V}_i| .$$

The claim follows. □