The Dinitz Algorithm

Reminder: Ford-Fulkerson Algorithm

Recall that the Ford-Fulkerson algorithm can be used to find a maximum flow in the network.

`Input` : Network $\mathcal{N}(G, s, t, c)$

`Output`: Flow function f

1. for $e \in E$ do
2. \hspace{1cm} $f(e) \leftarrow 0$
3. end
4. while there exists an augmenting path from s to t of value Δ do
5. \hspace{1cm} push Δ units of flow from s to t
6. end

Algorithm 1: Ford-Fulkerson Algorithm

Clearly, if Ford-Fulkerson algorithm stops then there is no augmenting path from s to t. Let $S \subseteq V$ be a collection of vertices v such that there is an augmenting path from s to v. Then $s \in S$, $t \notin S$. We have:

$$F \equiv (1) \sum_{e \in (S,S)} f(e) - \sum_{e \in (S,S)} f(e)$$

$$\equiv (2) \sum_{e \in (S,S)} c(e) - \sum_{e \in (S,S)} 0$$

$$\equiv (3) c(S)$$

Here, transition (1) gives the total flow in the cut $(S : \bar{S})$. Transition (2) holds because any edge in the cut $(S : \bar{S})$ must be saturated (otherwise the edge is useful, and both its endpoints are in S). Similarly, any edge in the cut $(\bar{S} : S)$ must have zero flow. Transition (3) is due to definition of the capacity of the cut. We obtain the following statement.

Theorem 1 Every network has a maximum flow, which is equal to the minimum capacity of any cut between s and t ($s \in S$, $t \notin S$).

1Additional reading: Sections 5.2 and 5.3 in the book of S. Even “Graph Algorithms”.
Example

Consider the following network, where M is a large positive number.

![Network Diagram]

In Ford-Fulkerson the choice of an augmenting path is arbitrary. Assume that in this network, the following two augmenting paths are chosen interchangeably: $s \to a \to b \to t$ and $s \to b \to a \to t$. In that case, each augmenting path improves the total flow by one unit. Therefore, $2M$ iterations are required to find the maximum flow. It is not efficient.

Some (more efficient) algorithms for finding maximum flows:

- **Edmonds-Karp (1972).** Complexity: $O(|V||E|^2)$.
- **Dinitz (1970).** Complexity: $O(|V|^2|E|)$.
- **Goldberg-Tarjan (1986).** Complexity: $O(|V|^2\sqrt{|E|})$ or $O(|V||E| \log (|V|^2/|E|))$.
- **Orlin (2013).** Complexity: $O(|V||E|)$ under some weak assumption on the graph.

Edmonds-Karp Algorithm

Edmonds-Karp algorithm (1972) is a modification of Ford-Fulkerson algorithm. It is also used to find a maximum flow in the network.

```
Input : Network $N(G, s, t, c)$
Output: Flow function $f$
1 for $e \in E$ do
2 \hspace{1em} $f(e) \leftarrow 0$;
3 end
4 while there exists an augmenting path from $s$ to $t$ do
5 \hspace{1em} push flow through the shortest augmenting path from $s$ to $t$;
6 end
```

Algorithm 2: Edmonds-Karp Algorithm

The difference of this algorithm with Ford-Fulkerson algorithm is that each time the shortest augmenting path is used. In the original Ford-Fulkerson algorithm it is not specified what
augmenting path should be taken. Since Edmonds-Karp is a special case of Ford-Fulkerson (the choice of augmenting paths in Edmonds-Karp is a legal choice also in Ford-Fulkerson, and the stopping condition is the same), the correctness of Edmonds-Karp follows from the correctness of Ford-Fulkerson.

Time complexity. By using the BFS, finding the shortest (augmenting) path is done in $O(|E|)$. Each edge can be a bottleneck (of an augmenting path) in N only $|V|/2$ times (the proof of this fact is omitted). Therefore, the total time complexity of Edmonds-Karp is $O(|V| \cdot |E|^2)$.

High Level Overview of Dinitz Algorithm

The algorithm starts with some legitimate flow (for example, zero flow in all edges) and gradually improves it. When no improvement is possible, the algorithm stops.

Definition 1 Given the network $N(G(V, E), s, t, c)$ and the flow function f, we define the residual network $N'(G'(V, E'), s, t, c')$ as follows:

- For every $u \xrightarrow{e} v$ in E such that $f(e) < c(e)$ we also have $u \xleftarrow{e} v$ in E'. We define its residual capacity $c'(e)$ to be $c(e) - f(e)$.

- For every $u \xrightarrow{e} v$ in E such that $f(e) > 0$ we have $u \xleftarrow{e'} v$ in E. We define $c'(e') = f(e)$.

If $0 < f(e) < c(e)$ then every edge $e \in E$ gives a rise to two antiparallel edges in E'. Otherwise, if $f(e) = 0$ or $f(e) = c(e)$, then there is only one edge in E' corresponding to e. Therefore, $|E| \leq |E'| \leq 2|E|$.

Dinitz Algorithm proceeds in phases. In each phase, the current f is used to produce the corresponding residue network N'. A layered network N'' is then produced by the BFS Algorithm applied to N' starting from s. If t is not reached in this process – the algorithm stops. If t is reached then a maximal flow f'' is found in N''. This flow is added to N, and the new phase is launched.
Example

Consider the following network:

We illustrate the run of Dinitz algorithm on this network.
Phase 1

Network N:

Network N':

Network N'' after some maximal flow is found (the maximal flow is not unique):
Phase 2

Network \mathcal{N}:

Network \mathcal{N}':

Network \mathcal{N}'' after some maximal flow is found:
Phase 3

Network \mathcal{N}:

Network \mathcal{N}':

Network \mathcal{N}'':

The vertex t cannot be reached, and therefore the algorithm stops. The current flow in the network \mathcal{N} is maximum.