1 Big-O notation

For each of the following, indicate whether \(f(n) = O(g(n)) \), \(f(n) = \Omega(g(n)) \), or \(f(n) = \Theta(g(n)) \). Justify your answer.

- \(f(n) = 100 \cdot n \) and \(g(n) = n^{1.1} \);
- \(f(n) = n^3 + 2n^2 + 10 \) and \(g(n) = (\log_2 n)^5 \);
- \(f(n) = 2^n \) and \(g(n) = \sqrt{n} \sqrt{n} \);
- \(f(n) = n^{\log_2 \log_2 n} \) and \(g(n) = 2 \cdot (\log_2 n)^{\log_2 n} \).

1.1 \(f(n) = 100 \cdot n \) and \(g(n) = n^{1.1} \)

This is easiest to approach by definition. There exists \(c = 100 \) and \(n_0 = 1 \) such that \(\forall n \geq n_0 \) we have \(100 \cdot n \leq 100 \cdot n^{1.1} \). Hence \(f(n) = O(g(n)) \).

On the other hand, \(f(n) \neq \Omega(g(n)) \). Assume, by contradiction, that for some value \(n_0 \) and \(c \) we have \(f(n) \geq c \cdot g(n) \) for all \(n \geq n_0 \). This can not happen, because for any \(c \) exists \(n_1 \) such that \(c \cdot n_1^{0.1} > 1 \), hence, for all \(n \geq n_1 \) we have \(f(n) < c \cdot g(n) \). Hence also \(f(n) \neq \Theta(g(n)) \).

1.2 \(f(n) = n^3 + 2n^2 + 10 \) and \(g(n) = (\log_2 n)^5 \)

The answer \(f(n) = \Omega(g(n)) \) is easiest to see by computing the limit with L’Hospital rule consecutively because of the indetermination \(\frac{\infty}{\infty} \).

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^3 + 2n^2 + 10}{(\log_2 n)^5} = \lim_{n \to \infty} \frac{(n^3 + 2n^2 + 10)'}{(\log_2 n)^5'} = \lim_{n \to \infty} \frac{3n^2 + 4n^2}{5(\log_2 n)^4} = \lim_{n \to \infty} \frac{3n^2 + 4n^2}{5(\log_2 n)^4} =
\]

\[
\frac{\ln 2}{5} \lim_{n \to \infty} \frac{(\log_2 n)^3}{(\log_2 n)^3} = \frac{\ln 2}{5} \lim_{n \to \infty} \frac{(27n^3 + 16n^2)'}{(\log_2 n)^4} = \frac{\ln 2}{120} \lim_{n \to \infty} \frac{(81n^3 + 32n^2)'}{(\log_2 n)^4} =\]

\[
\frac{(\ln 2)^2}{20} \lim_{n \to \infty} \frac{(9n^3 + 8n^2)'}{(\log_2 n)^3} = \frac{(\ln 2)^3}{60} \lim_{n \to \infty} \frac{(243n^3 + 64n^2)'}{(\log_2 n)^2} = \frac{(\ln 2)^4}{120} \lim_{n \to \infty} \frac{1}{(\log_2 n)^2} = \infty
\]
1.3 \(f(n) = 2^n \) and \(g(n) = \sqrt{n^\sqrt{n}} \)

The answer is again \(f(n) = \Omega(g(n)) \).

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{2^n}{\sqrt{n^\sqrt{n}}} = \lim_{n \to \infty} \frac{2^n}{\left(\sqrt{n}\right)^\sqrt{n}} = \infty
\]

Where we need to find \(\lim_{n \to \infty} \frac{2\sqrt{n}}{\sqrt{n}} = \infty \) for the last claim. This can be easily seen with an exchange of variables with \(x = \sqrt{n} \) where \(x \to \infty \) as \(n \to \infty \).

Finally, we can apply the L’Hospital rule:

\[
\lim_{x \to \infty} \frac{2^x}{x} = \lim_{x \to \infty} \frac{2^x \ln 2}{1} = \infty
\]

1.4 \(f(n) = n^{\log_2 \log_2 n} \) and \(g(n) = 2 \cdot (\log_2 n)^{\log_2 n} \)

In this case \(f(n) = \Theta(g(n)) \) as both definitions for big-O and \(\Omega \) are satisfied by \(c = \frac{1}{2} \) for any \(n_0 \). This is true because the functions are actually equal up to constant factor 2.

\[
n^{\log_2 \log_2 n} = (2^{\log_2 n})^{\log_2 \log_2 n} = 2^{\log_2 n \cdot \log_2 \log_2 n} = (2^{\log_2 \log_2 n})^{\log_2 n} = (\log_2 n)^{\log_2 n}
\]

2 Two spanning trees

Let \(T_1(V, E_1) \) and \(T_2(V, E_2) \) be two spanning trees of the (undirected, connected, finite) graph \(G(V, E) \). Prove that for every edge \(e \in E_1 \setminus E_2 \) there exists an edge \(e' \in E_2 \setminus E_1 \) such that each of the edge sets \((E_1 \cup \{e'\}) \setminus \{e\} \) and \((E_2 \cup \{e\}) \setminus \{e'\} \) defines a spanning tree.

Firstly, we can make some observations. For example \(|E_1| = |E_2| = |V| - 1\) because they are trees of the same vertices. Hence also \(|(E_1 \cup \{e'\}) \setminus \{e\}| = |(E_2 \cup \{e\}) \setminus \{e'\}| = |V| - 1\). Hence, by definitions these are spanning trees if they are connected. In addition, clearly \(e \neq e' \).

By definition \((E_1 \setminus \{e\})\) has \(|V| - 2\) edges and is disconnected. Assume that \(e = \{a, b\} \) for \(a, b \in V \). Then we can consider the two sets of disconnected vertices in \(A \subset V \) and \(A \subset V \) such that \(a \in B \) and vertices in \(A \) or \(B \) are connected and there is no edge between \(A \) or \(B \).

Consider a circuit \(C \) in \(E_2 \cup \{e\} \). By definition, there exists an edge \(p \in C \) such that \(p = \{a', b'\} \neq e \) for \(a' \in A \) and \(b' \in B \) because the circuit contains vertices from both \(A \) and \(B \), hence there are at least two such edges (and only one of them is \(e \)). By definition also \(p \neq e \) and \(p \notin E_1 \) as \(E_1 \setminus \{e\} \) has no edge between \(A \) and \(B \). Now, consider \((E_2 \setminus \{e\}) \cup p\) which is connected because \(p \) connects \(A \) and \(B \). In addition, it has \(|V| - 1\) edges, therefore it is a spanning tree. Differently, consider \((E_2 \setminus \{p\}) \cup \{e\}\). We know that \(e \) and \(p \) belong to one circuit in \(T_2 \) so \((E_2 \setminus \{p\}) \cup \{e\}\) is also connected and has \(|V| - 1\) edges. Therefore it is also a spanning tree. This is a contradiction as there exists such \(e' = p \).
3 Analogous weight functions

Let \(G(V, E) \) be an undirected, connected, finite graph. Let \(w : E \to \mathbb{R}^+ \) and \(w' : E \to \mathbb{R}^+ \) be two weight functions, such that

\[
\forall e_1, e_2 \in E : w(e_1) \leq w(e_2) \iff w'(e_1) \leq w'(e_2) .
\]

Prove that \(T \) is a minimum spanning tree of \(G \) with respect to \(w \) if and only if \(T \) is a minimum spanning tree of \(G \) with respect to \(w' \).

The following presents two ideas for solving this problem.

3.1 Idea 1: Analysing the edges in the tree

Assume by contradiction that there is a minimum spanning tree \(T_1(V, E_1) \) of \(G \) with respect to \(w \) that is not minimum with respect to \(w' \). Let \(T_2(V, E_2) \) where \(E_1 \neq E_2 \) be some minimum spanning tree of \(G \) with respect to \(w' \).

\(T_1 \) and \(T_2 \) are both spanning trees of \(G \), hence we can apply the result of Exercise 1. Hence, for each \(e \in E_1 \setminus E_2 \) there exist \(e' \in E_2 \setminus E_1 \) such that sets of edges \(E_1' = (E_1 \cup \{e\}) \setminus \{e\} \) and \(E_2' = (E_2 \cup \{e\}) \setminus \{e'\} \) also define spanning trees. We use the extended notation of the weight function as

\[
w(E) = \sum_{e \in E} w(e) .
\]

We have three possibilities:

1. \(w(e) < w(e') \) and \(w'(e) < w'(e') \). Then \(w'(E_2') = w'(E_2) + w'(e) - w'(e') < w'(E_2') \) which is a contradiction because \(T(V, E_2) \) was a minimum spanning tree with respect to \(w' \).

2. \(w(e') < w(e) \) and \(w'(e') < w'(e) \). Then \(w(E_1) = w(E_1') + w(e') - w(e) < w(E_1) \) which is a contradiction because \(T(V, E_1) \) was a minimum spanning tree with respect to \(w \).

3. \(w(e) = w(e') \) and \(w'(e) = w'(e') \). In this case we can define \(T'_2(V, E'_2) \) as a new minimum spanning tree of \(G \) with respect to \(w' \) because \(w'(E_2) = w'(E'_2) \). Now, there are two possibilities:

 (a) \(E'_2 = E_1 \) then we have \(T_1 = T'_2 \) which is a contradiction with the initial assumption.

 (b) \(E'_2 \neq E_1 \) then we start this analysis again with the same \(T_1 \), but use \(T'_2 \) instead of \(T_2 \). Either the edge \(e \) that we pick will give a contradiction for the conditions 1, 2 or 3a or we can do another change for the three \(T'_2 \) that we substitute for \(T'_2 \) and so on.

The following claim clarifies why this always terminates and at some point we end the process in one of the contradicting branches.

Claim: The process of substituting \(T_2 \) with \(T'_2 \) in previous branch 3b will terminate with at most \(|V| - 1\) steps.

Reasoning: Initially we have \(E_1 \cap E_2 = R \) and for each \(e \) that we pick in the analysis \(e \notin R \) because \(e \notin E_2 \) and \(e' \notin R \) because \(e' \notin E_1 \). However, for \(E_1 \cap E_2 = R \cup \{e\} \). The maximum
possible size of R is clearly $\max(|R|) = |E_1| = |E_2| = |V| - 1$. Each iteration will increase the size of R exactly by one, therefore there will be a step where we add some p so that $R = E_1$ and therefore $T_2' = T_1$ as in branch 3a. □

Therefore, if T is a minimum spanning tree for G with respect to w then it is also a minimum spanning tree with respect to w'.

The other direction changes the roles of w and w' in the previous analysis, but is otherwise the same.

Therefore, T is a minimum spanning tree of G with respect to w' if and only if it is a minimum spanning tree with respect to w'.

3.2 Idea 2: Kruskal algorithm

For every minimum spanning tree T of G there exists a run of Kruskal algorithm that finds this T. (Note that we did not prove this in class so that requires a separate proof.) These runs are defined by the different order of sorting.

Let T be a minimum spanning tree of G with respect to w. Now, consider a run of the Kruskal algorithm that finds T. Without lessening of generality assume that the initial sorting yields $w(e_1) \leq w(e_2) \leq \ldots \leq w(e_{|E|})$ where $i < j$ implies $w(e_i) \leq w(e_j)$. Starting Kruskal algorithm with edges ordered as $[e_1, e_2, e_3, \ldots, e_{|E|}]$ yields T. However, by definition this is also a valid ordering for w' because $w(e_1) \leq w(e_2) \leq \ldots \leq w(e_{|E|})$ implies $w'(e_1) \leq w'(e_2) \leq \ldots \leq w'(e_{|E|})$. The rest of the algorithm is independent of the weight function, therefore it would give the same T for w and w' because we can use the same sorter order. By correctness of the Kruskal algorithm we know that T is therefore a minimum spanning tree for both of these cases.

The other direction where T being a MST for w' implies that it is also a spanning tree for w is analogous.

4 Power of the Kruskal algorithm

Let $G(V,E)$ be an undirected, connected, finite graph with weight function $w : E \rightarrow \mathbb{R}^+$. Let T be a minimum spanning tree of G. Show that there exists a run of Kruskals algorithm that finds T (for suitable ordering of edges).

Assume, by contradiction, that there exists a minimum spanning tree $T_1(V,E_1)$ of G such that no run of the Kruskal algorithm finds this tree. Consider also a run of Kruskal algorithm that finds the spanning tree $T_2(V,E_2)$. For simplicity (and without lessening of generality), assume that the weight function is such that $w(e_i) \leq w(e_j)$ if $i < j$ and the sorting order that produces T_2 is by the order of the indices.

Assume that e_1 is the first such edge that differs between E_1 and E_2. Hence, it is the first edge where the algorithm makes a different choice for T_2 than T_1. There are two cases:

1. Assume, that e_1 is added to E_2 by the algorithm, but that it does not belong to E_1. The set $E_1 \cup \{e_1\}$ would contain a circuit. From the fact that e_1 is chosen to E_2 we know that it does
not form a cycle with only elements with the smaller index than \(i \) as there is no circuit in \(E_2 \). Hence the circuit in \(E_1 \cup \{ e_i \} \) must contain at least one edge with a larger index than \(i \). Therefore, there exists \(e_j \) where \(j > i \) and \(e_j \in E_1 \) but \(e_j \notin E_2 \) that is on the circuit. In addition, assume that \(e_j \) is the edge with the least weight among the suitable edges on the circuit.

There are two cases:

(a) \(w(e_i) = w(e_j) \). In such case we could consider a different run of the Kruskal algorithm where we swap the places of \(e_i \) and \(e_j \) in the sorting. This algorithm would produce \(T_3(V, E_3) \) with the condition that all edges \(e_k \) with \(k < i \) and \(e_j \) are either in both minimum spanning trees \(T_3 \) and \(T_1 \) or in neither. Clearly, using \(e_j \) instead of \(e_i \) would not introduce a circuit because there is no circuit in \(E_1 \), hence it is chosen to \(E_3 \) by the algorithm.

We could continue the analysis by finding the first edge that differs between \(T_3 \) and \(T_1 \) if \(E_1 \neq E_3 \). However, if \(E_1 = E_3 \) then we have found a run of Kruskal algorithm that finds \(T_1 \), which is a contradiction with the initial assumption.

(b) \(w(e_i) < w(e_j) \). We could consider a graph \(T_3(V, (E_1 \cup \{ e_i \}) \setminus \{ e_j \}) \). This is a spanning tree because it has \(|V| - 1 \) edges and it is connected because \(e_i \) and \(e_j \) formed a circuit in \(E_1 \). The weight of \(T_3 \), however, is less than \(T_1 \) because \(w(e_i) < w(e_j) \) which is a contradiction because \(T_1 \) was a minimum spanning tree. Therefore, this case can not happen.

2. Assume that \(e_i \) is a part of \(E_1 \), but is not chosen to \(E_2 \) by the Kruskal algorithm. The fact that \(e_i \) is not chosen to \(E_2 \) means that there is a circuit with \(e_i \) and edges previously added to \(E_2 \). However, the previous edges of \(E_2 \) are also part of \(E_1 \) and the fact that \(e_i \in E_1 \) contradicts the possibility of a circuit. Hence, it is not possible to find such an edge and this case can not happen.

Hence, there always exists a run of Kruskal algorithm that finds a minimum spanning tree \(T \). The main summary of the proof is that always when the Kruskal algorithm finds a different spanning tree then the difference is in the edges with the same weight and we can reorder them in the initial sorting to produce the necessary tree.

5 Uniqueness of the minimum spanning tree

Let \(G(V, E) \) be an undirected, connected, finite graph with weight function \(w : E \rightarrow \mathbb{R}^+ \). It is known that the weights of the edges in \(E \) are all different. Show that \(G \) has a unique minimum spanning tree.

Assume by contradiction, that there are two minimum spanning trees \(T_1(V, E_1) \) and \(T_2(V, E_2) \). We use the extended notation of the weight as

\[
w(E) = \sum_{e \in E} w(e).
\]
By definition $w(E_1) = w(E_2)$ and is minimal possible for a spanning tree of G. We also know that the trees are different, hence $E_1 \neq E_2$. Therefore we can use the proposition of Exercise 2 to find the edges $e \in E_1 \setminus E_2$ and $e' \in E_1 \setminus E_1$ as defined there $e \neq e'$.

Hence, set of edges $E'_1 = (E_1 \cup \{e'\}) \setminus \{e\}$ and $E'_2 = (E_2 \cup \{e\}) \setminus \{e'\}$ also define a spanning tree. Now, we can compute the weight of these trees as follows.

$$w(E'_1) = w(E_1) - w(e) + w(e')$$
$$w(E'_2) = w(E_2) - w(e') + w(e)$$

From the precondition of the theorem we know that $w(e) \neq w(e')$. Therefore we have two cases:

1. if $w(e) < w(e')$ then $w(E'_2) = w(E_2) - w(e') + w(e) < w(E_2)$ which is a contradiction, because then $T(V, E'_2)$ would be a spanning tree with smaller weight than the minimum spanning tree of G.
2. if $w(e') < w(e)$, then $w(E'_1) = w(E_1) - w(e) + w(e') < w(E_1)$, which is again a contradiction because $T_1(V, E_1)$ is a minimum spanning tree of G.

Therefore, it is impossible for any two different minimum spanning trees to exist when all the edges have different weights.