Basic Graph Algorithms

Oliver-Matis Lill

April 23, 2018
Graphs are basically a collection of nodes connected by edges. They can be directed, or undirected. Skill with OOP and knowledge of the Standard Library will be extremely useful.
```cpp
struct Graph {
    struct Node {
        vector<Node*> arc;
    };
    deque<Node> nodes;
    int n = 0;

    Node* newNode() {
        nodes.push_back(Node());
        return &nodes.back();
    }
    void addArc(Node* a, Node* b) {
        a->arc.push_back(b);
    }
};
```
Suppose you have an unconnected, undirected graph like this:

How would you find what other nodes are connected to some chosen node (for instance D from above image)
Intuitively you traverse the nodes while keeping track which ones are explored, performing traversal until all connected nodes are traversed.

Turns out it’s simple to write a program to do that.

There are however different possible traversal approaches.
Two common and useful traversal techniques are:

1. Depth-first search - greedily traverse from last node, move back when no new nodes to traverse to
2. Breadth-first search - traverse in "waves", going from closer nodes to farther ones

DFS is usually implemented with recursion, BFS with a queue

The order in which nodes are traversed could look like:
Example

DFS (Depth-First Search)

```c
void DFS(Node* cur) {
    cur->explored = true;
    for (Node* next : cur->arc)
        if (!next->explored)
            DFS(next);
}
```

BFS (Breadth-First Search)

```c
void BFS(Node* start) {
    deque<Node*> que(1, start);
    start->explored = true;
    while (que.size() > 0) {
        Node* cur = que.front();
        que.pop_front();
        for (Node* next : cur->arc)
            if (!next->explored) {
                next->explored = true;
                que.push_back(next);
            }
    }
}
```
DFS is generally much simpler

They have different properties that are useful in different scenarios

If all edges have equal length, then BFS will be an effective technique for finding minimum path
Dijkstra Algorithm

- Suppose we have edges with differing non-negative lengths and we want to find a shortest path from A to some other vertex B.
- Recall from the Dynamic Programming lecture, that if all edges are directed from smaller vertex index to larger, then there is a simple DP solution.
Dijkstra Algorithm

Idea

- Let’s number the nodes from 1 to N and the roads from 1 to M. Without loss of generality let’s pick 1 to be the starting node and N to be the destination node.
- Each road j is characterized by three integers: the starting node s_j, the ending node e_j and its length l_j.
- Let’s denote that:

\[d_i = \text{the minimum path length from node 1 to node } i \]
Dijkstra Algorithm

Idea

- Notice that:

\[d_i = \min_{j \in \text{in}(i)} \{d_{s_j} + l_j\} \]

where \(\text{in}(i) \) is the set of edges entering node \(i \)

- That’s because, suppose \((s_j, e_j)\) is the last edge traversed to \(e_j \) in the minimum path. We obviously want the path to \(s_j \) we used to be minimum as well, therefore \(d_{e_j} = d_{s_j} + l_j \)

- Obviously \(d_1 = 0 \), but how to calculate the rest?
Dijkstra Algorithm

Idea

Let’s repeat the following algorithm until d_N is calculated:

1. Let E be the set of every node i for which d_i is known
2. Find j such that $s_j \in E$, $e_j \notin E$ and $d_{s_j} + l_j$ is minimal
3. Set $d_{e_j} = d_{s_j} + l_j$ and add e_j to E

Note that step 2 will set d_{e_j} to be the minimum possible, because thanks to step 2, every d_i calculated in the future will be greater (or equal)
Note that the algorithm is run $O(N)$ times.

An easy way to perform step 2 would be to iterate over all edges to find the minimal $d_{s_j} + l_j$. This would take $O(M)$ operations and give a total running time of $O(NM)$.

We can however do much better by keeping all candidates for the minima in a heap and then adding new candidates at step 3.

Each edge would add a single candidate to heap (when s_j is added to E at step 3) and heap operations will take $O(\log M)$ operations.

This would give us an $O(M \log M)$ algorithm.
Dijkstra Algorithm

Example

This node will be picked next

Graph showing distances and paths.
Dijkstra Algorithm Code

Example

```cpp
void Dijkstra(Node* start) {
    //Note: priority_queue is a max heap. Use the inverses of potentials
    priority_queue<pair<int, Node*>> front;
    front.push({0, start});
    while(front.size() > 0) {
        int dist; Node* cur;
        tie(dist, cur) = front.top();
        front.pop();
        if(cur->explored)
            continue;
        cur->explored = true;
        cur->distance = -dist;
        for(Arc* curArc : cur->arc)
            front.push({dist - curArc->length, curArc->destination});
    }
}
```