Sequence alignment

Bioinformatics MTAT.03.239
22.02.2018

Priit Adler
This lecture

- Reference genome
- Genomic variation
- Sequence alignment
 - mapping reads to reference your self!
• How long is human DNA?
• How many “genes” do we have?
• Describe the “Central dogma of molecular biology”
Biology milestones

- **1950**: DNA structure reported by Watson and Crick (1953)
- **1960**: DNA genetic code deduced for 20+ codons and their respective amino acids and reported by M. Niremberg, H. Mathaei and S. Ochoa (1966)
- **1970**: First recombinant DNA molecules were created (P. Berg 1972)
- **1977**: Di-deoxy sequencing reported by F. Sanger
- **1980**: Polymerase chain reaction reported (Mullis 1983)
- **1990**: Human genome project initiated in public section (1990)
- **1995**: First completed genome sequence in public sector for *M. genitalium* (Fraser et al. 1995)
- **1998**: Human genome project initiated in private sector (Venter 1998)
- **2001**: Initial drafts of human genome reported simultaneously in private and public sectors
- **2004**: Finished drafts of euchromatic sequence of human genome reported in public sector
- **2005**: Rough draft (5x coverage) chimpanzee reported
- **2007**: Massively parallel sequencing technologies now being widely utilized about 2007 (technology made publicly available in 2004)

Estimate the number of genes in Human genome
Genomic data

http://www.futuretimeline.net/blog/2014/01/16.htm#.VfsvUZ2qpBc
Genomic data

Growth of GenBank and WGS

Analysis of sequences

• Sequence alignment
• Gene prediction
• Genome assembly
• Protein structure / domains
A reference genome (also known as a reference assembly) is a digital nucleic acid sequence database, assembled by scientists as a representative example of a species' set of genes.

https://en.wikipedia.org/wiki/Reference_genome
Genome

- Is the entirety of an organism’s hereditary information
- The genome includes both the genes and non-coding sequences of DNA/RNA
- In 1995, Haemophilus influenzae or was the first genome of a living organism to be sequenced in July 1995
- 1,830,140 base pairs of DNA in single circular chromosome that contains 1,740 protein-coding gene, 58 transfer RNA genes and 18 other RNA genes
Whole Genomes

Drosophila
C. elegans
Rat
Human
Mouse
Rice
Mosquito
Yeast
E. coli
H. influenza
Arabidopsis
Genome sizes

<table>
<thead>
<tr>
<th>Organism</th>
<th>Completion date</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>phiX174</td>
<td>1978</td>
<td>5,368 bp</td>
<td>1st viral genome</td>
</tr>
<tr>
<td>human mtDNA</td>
<td>1980</td>
<td>16,571 bp</td>
<td>1st organelle genome</td>
</tr>
<tr>
<td>lambda phage</td>
<td>1982</td>
<td>48,502 bp</td>
<td>important virus model</td>
</tr>
<tr>
<td>HIV</td>
<td>1985</td>
<td>9,193 bp</td>
<td>AIDS retrovirus</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>1995</td>
<td>1,830 Kb</td>
<td>1st bacterial genome</td>
</tr>
<tr>
<td>M. genitalium</td>
<td>1995</td>
<td>580 Kb</td>
<td>smallest bacterial genome</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>1996</td>
<td>12.5 Mb</td>
<td>1st eukaryotic genome</td>
</tr>
<tr>
<td>E. coli K12</td>
<td>1997</td>
<td>4.6 Mb</td>
<td>bacterial model organism</td>
</tr>
<tr>
<td>C. trachomatis</td>
<td>1998</td>
<td>1,042 Kb</td>
<td>internal parasite of eukaryotes</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>2000</td>
<td>180 Mb</td>
<td>fruit fly, model insect</td>
</tr>
<tr>
<td>A. thaliana</td>
<td>2000</td>
<td>125 Mb</td>
<td>thale cress, model plant</td>
</tr>
<tr>
<td>H. sapiens</td>
<td>2001</td>
<td>3,000 Mb</td>
<td>human</td>
</tr>
<tr>
<td>SARS</td>
<td>2003</td>
<td>29,751 bp</td>
<td>coronavirus</td>
</tr>
</tbody>
</table>
“Completely” sequenced genomes
Human genome

- One cell
 - 23 pairs of chromosomes

- DNA
 - 3 billion pairs of DNA bases

- RNA
 - ≈ 21,000 to 23,000 genes

- Protein
 - ≈ 100,000 different proteins

- Human body
 - 10^{14} cells
 - (100 trillion)
Human full genome: 3234.8 Mb

Tallinn - Jõgeva - Misso: 320 km

ATGCTCGTAC = 1mm
DNA

- Protein coding genes cover only 1.5% of human genome
- Basepair variation between 2 genomes <~ 1%
- Structural variation accounts for more...
- What does the rest do?
MCF7 (cancer model) genomic rearrangement
Genomic variation

- SNPs — single (short) nucleotide polymorphisms
- Indels — insertions / deletions
- CNVs — copy number variations
- Genomic rearrangements
Graph genome

https://www.sevenbridges.com/graph/
DNA sequencing

- Read length
- Single reads
- Paired end reads

Questions

• Name sources of genetic variance
• Is human genome complete?
• What is the typical sequencing read length?
Gene expression
DNA vs RNA sequencing

DNA seq

RNA seq

reference genome
DNA complementarity

3’ - ATGC GG TAGGACGGCTAATGCCA - 5’

5’ - TACGCCATCCTGCGGATTACGGT - 3’
DNA reverse complementarity

3’ – ATGC GG TAGGACGGCTAATGCCA – 5’

TGGCATTTAAGCCGTCCTACC CGCAT
Alignment problem

Find best fitting matching position from reference genome to a sequence read
Alignement problem

- Exact matching
- Edit distance
- sequence alignment
Sequence alignment

dynamic programming

http://avatar.se/lectures/molbioinfo2001/dynprog/dynamic.html
Sequence alignment

Global alignment

Local alignment

Fitting alignment (global - local alignment)
Global alignment - http://rosalind.info/glossary/alignment/

Local alignment - http://rosalind.info/glossary/local-alignment/

Fitting alignment (global - local alignment) - http://rosalind.info/glossary/fitting-alignment/
HTS aligners timeline
https://www.ebi.ac.uk/~nf/hts_mappers/
Practice session

Container will be deleted after use

docker run -ti --rm -v /path/to/your/course/catalog:/home/jovyan/bioinf:/rw -p 8888:8888 jupyter/base-notebook

where your data is: where notebook home is: read and write
open port to access notebook
• Write down 3 things you least understood in today lecture